Addition Rule: $\quad P(A$ or $B)=P(A)+P(B)-p(A$ and $B)$

Discrete Probability Distribution

\mathbf{X}	\mathbf{f} (days)	$f \div n=p(x) \%$	$x p(x)$

TI-83/84 Inputting x-values in L1 and probabilities in L2
then stat \rightarrow calc \rightarrow Option $1 \rightarrow$ enter $\rightarrow \mathbf{L 1}, \mathbf{L 2} \rightarrow \rightarrow$ enter

Counting

Factorial: Number of ways \mathbf{n} objects or subjects can be arranged $=n!$
Combination: Number of ways that \mathbf{x} objects or subjects can be selected from \mathbf{n} objects or subjects
The order in selection is not relevant. $n C x=\frac{n!}{x!(n-x)!} \quad$ TI-83/84 $\quad n \rightarrow$ math \rightarrow PRB \rightarrow Option $3 \rightarrow x$
Permutation: Number of ways that \mathbf{x} objects or subjects can be selected from \mathbf{n} objects or subjects
The order in selection is relevant. $n P x=\frac{n!}{(n-x)!} \quad$ TI-83/84 $\quad n \rightarrow$ math $\rightarrow P R B \rightarrow$ Option $2 \rightarrow x$
Binomial Probability
$P(x)=n C x \quad p^{x}(1-p)^{n-x} \quad$ Mean $=\mu=n p \quad$ St. Dev. $=\sigma=\sqrt{n p(1-p)}$
$p=$ Desired probability $n=$ Total number of trials $\quad x=$ Number of desired outcomes
$n C x=$ Combination Rule

TI-83/84 2nd \rightarrow DISTR
$P(x)=n C x \quad p^{x}(1-p)^{n-x}$

> | Non - Standard Normal Probability (NSNPD) | | | |
| :---: | :---: | :---: | :---: |
| TI-83/84 $\quad 2 n d \rightarrow$ DISTR \rightarrow Option 2 then \quad input $(L B, U B, \mu, \sigma) \rightarrow$ enter | | | |

$$
\text { To create Lower Boundary } L B=\bar{x}-5 s \quad \text { To create Upper Boundary } U B=\bar{x}+5 s
$$

Cut-off point formula $x=\bar{x}+S Z$ or $x=\mu+\sigma Z \quad$ TI-83/84 2nd \rightarrow DISTR \rightarrow Option 3 input $(\%, \mu, \sigma)$ For finding \mathbf{Z}, you need to look it up on page $\mathbf{3}$ of the table Hint for TI $\%$ is the area to the left of the cut off point.

Converting a non - standard value to standard value by using

$$
Z=\frac{x-\mu}{\sigma} \quad \text { or } \quad Z=\frac{x-\bar{x}}{s}
$$

