Discrete Probability Distribution

Х	f (days)	$f \div n = p(x) $ %	x p(x)

Expected Value = Mean = $\mu = \sum x p(x)$ +

TI-83/84 Inputting *x*-values in *L1* and *probabilities* in *L2* then stat \rightarrow calc \rightarrow Option $1 \rightarrow$ enter \rightarrow *L1*, *L2* \rightarrow \rightarrow enter

Counting

Factorial: Number of ways **n** objects or subjects can be arranged = n!

Combination: Number of ways that **x objects** or subjects can be selected from **n** objects or subjects The order in selection is **not relevant**. $nCx = \frac{n!}{x!(n-x)!}$ **TI-83/84** $n \rightarrow math \rightarrow PRB \rightarrow Option 3 \rightarrow x$ **Permutation:** Number of ways that **x** objects or subjects can be selected from **n** objects or subjects The order in selection is **relevant**. $nPx = \frac{n!}{(n-x)!}$ **TI-83/84** $n \rightarrow math \rightarrow PRB \rightarrow Option 2 \rightarrow x$

Binomial Probability

 $P(x) = nCx \ p^{x}(1-p)^{n-x} \quad \text{Mean} = \mu = n \ p \quad \text{St. Dev.} = \sigma = \sqrt{n \ p(1-p)}$ $p = Desired \ probability \quad n = Total \ number \ of \ trials \quad x = Number \ of \ desired \ outcomes$ $nCx = Combination \ Rule$ $TI-83/84 \quad 2nd \rightarrow DISTR \rightarrow Option \ 0 \quad then \quad input \ (n,p,x) \rightarrow enter$ $P(x) = nCx \ p^{x}(1-p)^{n-x}$

Non - Standard Normal Probability (NSNPD) TI-83/84 $2nd \rightarrow DISTR \rightarrow Option 2$ then input (LB, UB, μ, σ) \rightarrow enter

To create Lower Boundary $LB = \overline{x} - 5S$

To create Upper Boundary $UB = \overline{x} + 5S$

Cut-off point formula $x = \overline{x} + s z$ or $x = \mu + \sigma z$ **TI-83/84** $2nd \rightarrow DISTR \rightarrow Option 3 input (\%, \mu, \sigma)$ For finding **Z**, you need to look it up on page 3 of the table Hint for TI % is the area to the left of the cut off point.

Converting a non - standard value to standard value by using

