Be sure you always have this page and Normal and T-Distribution as a reference for every estimation problem Important: If confidence level is not given use 95% as a default.

Estimating One Population Mean $\mu=\bar{x} \pm E$

$\overline{\boldsymbol{X}}$ = Point estimate (Sample Mean)		E = Margin of error(error bound)
Decision making process based on sample size		
Margin of Error	If $n>30 \quad \boldsymbol{E}=\boldsymbol{z}_{\boldsymbol{\alpha} / 2} \frac{\boldsymbol{\sigma}}{\sqrt{\mathrm{n}}}=\boldsymbol{z}_{\boldsymbol{\alpha} / 2} \frac{\boldsymbol{s}}{\sqrt{\mathrm{n}}}$ If $\boldsymbol{n} \leq 30 \quad \boldsymbol{E}=\boldsymbol{t}_{\boldsymbol{\alpha} / 2} \frac{\boldsymbol{s}}{\sqrt{\mathrm{n}}}$	(For $\boldsymbol{z}_{\alpha / 2}$, use Table page $\mathbf{1}$) (For $\boldsymbol{t}_{\boldsymbol{\alpha} / 2}$, use Table page 2)
Interval Estimate	$\mu=\bar{x} \pm E$	
TI-83/84	stat \rightarrow tests \rightarrow Option 7(Z-interval)	stat \rightarrow tests \rightarrow Option 8(t-interval)
Width (difference between upper and lower bounds) $=2 E=U B-L B \quad E=(U B-L B) / 2$ Point Estimate (middle of upper and lower bounds) $=\bar{x}=(U B+L B) / 2$		

Estimating One Population Proportion $P=\hat{p} \pm E$

Estimating Population Proportion $\mathrm{P}=\hat{\mathrm{p}} \pm \mathrm{E}$			
$\hat{\mathbf{P}}=\frac{\mathbf{x}}{\mathbf{n}}$	(Called p-hat is sample proportion and point estimate for population proportion)	E = Margin of error	$\mathbf{E}=z_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}}$
Width (difference between upper and lower bounds) $=2 E=U B-L B$ so $\quad E=(U B-L B) / 2$			
TI-83 stat \rightarrow test \rightarrow Option A			

Estimating the difference between Two Populations Means or Proportions	
Mean $\mu_{1}-\mu_{2}$	Proportion $P_{1}-P_{2}$
$\mu_{1}-\mu_{2}=\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm \mathrm{E}$	$P_{1}-P_{2}=\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm \mathrm{E}$
Point estimate $=\left(\bar{x}_{1}-\bar{x}_{2}\right)$	Point estimate $=\left(\hat{p}_{1}-\hat{p}_{2}\right)$
$\mathrm{E}=Z \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$	$\mathrm{E}=Z \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$
TI-83/84 stat \rightarrow test \rightarrow Option 9	TI-83/84 stat \rightarrow test $\rightarrow \boldsymbol{B}$

