Test of Hypothesis

- 4. Compute **Test Statistics** (based on sample information) from the following formulas.
 - a. $z = \frac{\sqrt{n}(\bar{x} \mu)}{s}$ To test the Mean (μ) for large sample sizes or when σ is known TI-83/84 stat \rightarrow test \rightarrow Option $1 \rightarrow$ select stats then input the asked info
 - b. $t = \frac{\sqrt{n}(\bar{x} \mu)}{s}$ To test the Mean (μ) for $n \le 30$ and σ is unknown

TI-83/84 stat \rightarrow test \rightarrow Option $2 \rightarrow$ select stats then input the asked info

c. $Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$ To test population proportion (**P**)

TI-83/84 stat \rightarrow test \rightarrow Option $5 \rightarrow$ select stats then input the asked info

d. $Z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$ Two independent population μ_1, μ_2

TI-83/84 stat \rightarrow test \rightarrow Option 3 \rightarrow select stats then input the asked info

e. $t = \frac{\sqrt{n}(\overline{d} - \mu_d)}{s_d}$ For Paired Samples

TI-83/84 First input the d-values in L1 then stat \rightarrow test \rightarrow Option 2 \rightarrow select data

f. $\chi^2 = \sum \frac{(O-E)^2}{F}$ Observed, Expected, for Multinomial or Independency Test

TI-83/84

Input **O**bserved values into L1 and **E**xpected Values into L2 and **then** go to the top of L3 and write $(L_1 - L_2)^2 / L_2 \rightarrow stat \rightarrow Calc \rightarrow Option 1 \rightarrow L_3 \rightarrow enter$ **then** $\sum X$ is the answer