	Step 1	Step 2	Step 3	Test Statistics (ts)	Conclusion About H_{0}	Comment About SC	P-value
1	$\begin{aligned} & \text { SC } \mu>40 \\ & \text { OC } \mu \leq 40 \end{aligned}$	$\begin{aligned} & \mathbf{H}_{0}: \mu \leq 40 \\ & \mathbf{H}_{1}: \quad \mu>40 \\ & \text { RTT } \end{aligned}$	$\begin{aligned} & \alpha=.05, n=49 \\ & \mathrm{RTT} \\ & \mathbf{C V}=1.645 \end{aligned}$	$n=49, \quad \bar{x}=41.8, \quad s=3.8$ $z=\frac{\sqrt{49}(41.8-40)}{3.8}=3.316$	ts falls inside CR \Rightarrow Reject that $\mathbf{H}_{\mathbf{0}}: \mu \leq 40$	Accept That SC: $\mu>40$	0.00004 Lower than $\alpha=.05$
2	$\begin{aligned} & \text { SC } \mu \neq 40 \\ & \text { OC } \mu=40 \end{aligned}$	$\begin{aligned} & \mathbf{H}_{0}: \mu=40 \\ & \mathbf{H}_{\mathbf{1}}: \mu \neq 40 \end{aligned}$ TTT	$\mathbf{C V}= \pm 2.576$	$\begin{aligned} & n=49, \quad \bar{x}=42.8, \quad s=4.8 \\ & z=\frac{\sqrt{49}(42.8-40)}{4.8}=4.08 \end{aligned}$	ts falls inside CR \Rightarrow Reject that $\mathbf{H}_{\mathbf{0}}: \mu=40$	Accept That SC: $\mu \neq 40$	0.00004 Lower than $\alpha=.01$
3	$\begin{aligned} & \text { SC } \mu<40 \\ & \text { OC } \mu \geq 40 \end{aligned}$	$\begin{aligned} & \mathbf{H}_{0}: \mu \geq 40 \\ & \mathbf{H}_{\mathbf{1}}: \mu<40 \end{aligned}$ LTT	$\alpha=.01 n=56$ LTT $\mathbf{C V}=-2.326$	$n=56, \quad \bar{x}=39.5, \quad s=1.9$ $z=\frac{\sqrt{56}(39.5-40)}{1.9}=-1.969$	ts falls not inside $\boldsymbol{C R}$ \Rightarrow Accept that $\mathbf{H}_{0}: \mu \geq 40$	Reject That SC: $\mu<40$	0.00245 Not lower than $\alpha=.01$
4	$\begin{aligned} & \text { SC } \mu<40 \\ & \text { OC } \mu \geq 40 \end{aligned}$	$\begin{aligned} & \mathbf{H}_{0}: \mu \geq 40 \\ & \mathbf{H}_{\mathbf{1}}: \mu<40 \end{aligned}$	$\alpha=.05, \quad n=16$ LTT $\mathbf{C V}=-1.753$	$\begin{aligned} & n=16, \quad \bar{x}=38.5, \quad s=2.2 \\ & t=\frac{\sqrt{16}(38.5-40)}{2.2}=-2.727 \end{aligned}$	ts falls inside CR \Rightarrow Reject that $\mathbf{H}_{\mathbf{0}}: \mu \geq 40$	Accept SC: $\mu<40$	0.00779 Not lower than $\alpha=.05$
5	$\begin{aligned} & \text { SC: } \mu=15 \\ & \text { OC } \mu \neq 15 \end{aligned}$	$\mathbf{H}_{0}: \mu=15$ $\mathbf{H}_{1:} \quad \mu \neq 15$ TTT	$\mathbf{C V}= \pm 1.796$	$n=12, \quad \bar{x}=13.8, \quad s=2.7$ $t=\frac{\sqrt{12}(13.8-15)}{2.7}=-1.52$	ts falls not inside $\boldsymbol{C R}$ \Rightarrow Accept that $\mathbf{H}_{0}: \mu=15$	Accept That SC: $\mu=15$	0.1519 Not lower than $\alpha=.01$
6	$\begin{aligned} & \text { SC } \\ & p>0.40 \\ & \text { OC } \\ & p \leq 0.40 \end{aligned}$	$\begin{aligned} & \mathbf{H}_{0}: \\ & \quad p \leq 0.40 \\ & \mathbf{H}_{1:} \\ & \quad p>0.40 \\ & \text { RTT } \end{aligned}$		$\begin{aligned} & n=250, \quad x=120, \\ & \hat{p}=120 / 250=.48 \\ & \quad Z=\frac{.48-.40}{\sqrt{\frac{.4(1-.4)}{250}}}=2.57 \end{aligned}$	ts falls inside $C R \Rightarrow$ Reject that $\mathbf{H}_{\mathbf{0}}: p \leq 0.40$	Accept That SC: $p>.40$	0.0049 Lower than $\alpha=.01$
7	$\begin{aligned} & \text { SC: } \\ & \quad p \geq 0.40 \\ & \text { OC: } \\ & \quad p<0.40 \end{aligned}$	\mathbf{H}_{0} : $p \geq 0.40$ $\mathbf{H}_{\mathbf{1}} p<0.40$	$\begin{aligned} & \alpha=.05, \quad n=360 \\ & \text { LTT } \\ & \text { RTA A } \\ & \mathbf{C V}=-1.6450 \end{aligned}$	$\begin{aligned} & n=360, \quad x=135, \\ & \hat{p}=135 / 360=.375 \\ & \quad Z=\frac{.375-.40}{\sqrt{\frac{.4(1-.4)}{360}}}=-.968 \end{aligned}$	ts falls not inside $\boldsymbol{C R}$ \Rightarrow Accept that $\mathbf{H}_{\mathbf{0}}: \quad p \geq 0.40$	Accept That SC: $p \geq .40$	0.16646 Not lower than $\alpha=.05$

Please complete the table

	Step 1	Step 2	Step 3	Test Statistics = ts	Conclusion	Comment	P-value
1	SC: $\mu=41$ OC:	$\mathbf{H}_{0} \text { : }$ $\mathbf{H}_{1}:$	$\alpha=.01, \quad n=36$ $\mathrm{CV}=\text { ? }=$	$n=36, \quad \bar{x}=42.2, \quad s=3.2$ $t s=$	$\boldsymbol{t s}$ falls inside of CR or not ? \Rightarrow Reject $\mathbf{H}_{\mathbf{0}}$ or Accept $\mathbf{H}_{\mathbf{0}}$?	Accept or Reject SC:	
2	$\begin{aligned} & \text { SC: } \\ & \mu \leq 55 \\ & \text { OC: } \end{aligned}$	$\mathbf{H}_{0} \text { : }$ $\mathbf{H}_{1}:$	$\alpha=0.01 \quad n=64$ $\mathrm{CV}=?=$	$n=64, \quad \bar{x}=56.2, \quad s=8.4$ $t s=$	ts falls inside of CR or not ? \Rightarrow Reject $\mathbf{H}_{\mathbf{0}}$ or Accept $\mathbf{H}_{\mathbf{0}}$?	Accept or Reject SC:	
3	SC: $\mu \neq 14$ OC:	$\mathbf{H}_{\mathbf{0}} \text { : }$ $\mathbf{H}_{1}:$	$\alpha=.05 \quad n=20$ $\mathrm{CV}=?=$	$\begin{aligned} & n=20, \quad \bar{x}=13.12, \quad s=3.2 \\ & t s= \end{aligned}$	$\boldsymbol{t s}$ falls inside of CR or not ? \Rightarrow Reject $\mathbf{H}_{\mathbf{0}}$ or Accept $\mathbf{H}_{\mathbf{0}}$?	Accept or Reject SC:	
4	SC: $\mu \geq 400$ OC:	$\mathbf{H}_{0} \text { : }$ $\mathbf{H}_{1} \text { : }$	$\alpha=.025, \quad n=25$ $\mathrm{CV}=?=$	$\begin{aligned} & n=25, \quad \bar{x}=380, \quad s=32 \\ & t s= \end{aligned}$	ts falls inside of CR or not ? \Rightarrow Reject $\mathbf{H}_{\mathbf{0}}$ or Accept $\mathbf{H}_{\mathbf{0}}$?	Accept or Reject that SC:	
5	SC: $\mu<102$ OC:	$\mathbf{H}_{\mathbf{0}} \text { : }$ $\mathbf{H}_{1}:$	$\alpha=.01, \quad n=82$ $\mathrm{CV}=?=$	$n=82, \quad \bar{x}=97.5, \quad s=17.521$ $t s=$	ts falls inside of CR or not ? \Rightarrow Reject \mathbf{H}_{0} or Accept $\mathbf{H}_{\mathbf{0}}$?	Accept or Reject SC:	
6	SC: $p \neq 0.13$ OC:	$\mathbf{H}_{0} \text { : }$ $\mathbf{H}_{1}:$	$\alpha=.05, \quad n=400$ $\mathrm{CV}=?=$	$n=400, \quad x=64 \hat{p}=$ $t s=$	ts falls inside of CR or not ? \Rightarrow Reject $\mathbf{H}_{\mathbf{0}}$ or Accept \mathbf{H}_{0} ?	Accept or Reject SC	
7	SC: $p>0.44$ OC:	$\mathbf{H}_{0} \text { : }$ $\mathbf{H}_{1}:$	$\alpha=.01, \quad n=200$ $\mathrm{CV}=?=$	$n=200, \quad x=92, \quad \hat{p}=$ $t s=$	ts falls inside of CR or not ? \Rightarrow Reject \mathbf{H}_{0} or Accept $\mathbf{H}_{\mathbf{0}}$?	Accept or Reject SC:	

Answers on Page 3

	Step 1	Step 2	Step 3	Test Statistics $=$ ts	Conclusion	Comment	P -value
1	$\begin{aligned} & \text { SC: } \\ & \mu=41 \\ & \text { OC: } \\ & \mu \neq 41 \end{aligned}$	\mathbf{H}_{0} : $\mu=41$ H_{1} : $\mu \neq 41$	$\begin{aligned} & \alpha=.01, \quad n=36 \\ & \frac{R}{1} A_{R} \\ & \mathbf{0} \end{aligned}$ $\mathbf{C V}= \pm 2.576$	$n=36, \quad \bar{x}=42.2, \quad s=3.2$ $z=\frac{\sqrt{36}(42.2-41)}{3.2}=2.25$	ts falls not inside of $\boldsymbol{C R} \Rightarrow$ Accept \mathbf{H}_{0} $\mu=41$	Accept that SC: $\mu=41$	0.024 Not lower than $\alpha=.05$
2	$\begin{aligned} & \text { SC: } \\ & \mu \leq 55 \\ & \text { OC: } \\ & \mu>55 \end{aligned}$	\mathbf{H}_{0} : $\mu \leq 55$ H_{1} : $\mu>55$	$\alpha=0.01 \quad n=64$ $\mathbf{C V}=2.326$	$n=64, \quad \bar{x}=56.2, \quad s=8.4$ $z=\frac{\sqrt{64}(56.2-55)}{8.4}=1.1429$	ts falls not inside of $\boldsymbol{C R}$ \Rightarrow Accept \mathbf{H}_{0} $\mu \leq 55$	Accept that SC: $\mu \leq 55$	0.127 Not lower than $\alpha=.01$
3	SC: $\mu \neq 14$ OC: $\mu=14$	H_{0} : $\mu=14$ H_{1} : $\mu \neq 14$	$\mathbf{C V}= \pm 2.093$	$n=20, \quad \bar{x}=13.12, \quad s=3.2$ $t=\frac{\sqrt{20}(13.12-14)}{3.2}=-1.229$	ts falls not inside of $\boldsymbol{C R}$ \Rightarrow Accept \mathbf{H}_{0} $\mu=14$	Reject that SC: $\mu \neq 14$	0.2338 Not lower than $\alpha=.05$
4	$\begin{aligned} & \text { SC: } \\ & \mu \geq 400 \\ & \text { OC: } \\ & \mu<400 \end{aligned}$	$\begin{aligned} & \mathbf{H}_{\mathbf{0}}: \\ & \mu \geq 400 \\ & \mathbf{H}_{\mathbf{1}}: \\ & \mu<400 \end{aligned}$	$\mathbf{C V}=-2.064$	$n=25, \quad \bar{x}=380, \quad s=32$ $t=\frac{\sqrt{25}(380-400)}{32}=-3.125$	ts falls inside of $\boldsymbol{C R} \Rightarrow$ Reject $\mathbf{H}_{\mathbf{0}}$ $\mu \geq 400$	Reject that SC: $\mu \geq 400$	0.0023 Lower than $\alpha=.025$
5	$\begin{aligned} & \text { SC: } \\ & \mu<102 \\ & \text { OC: } \\ & \mu \geq 102 \end{aligned}$	$\begin{aligned} & \mathbf{H}_{\mathbf{0}}: \\ & \mu \geq 102 \\ & \mathbf{H}_{\mathbf{1}}: \\ & \quad \mu<102 \end{aligned}$	$\alpha=.01, \quad n=82$ $\mathbf{C V}=-2.326$	$n=82, \quad \bar{x}=97.5, \quad s=17.521$ $Z=\frac{\sqrt{82}(97.5-102)}{17.521}=-2.326$	ts falls on the border line of CR \Rightarrow Inconclusive	SC: Inconclusive	0.0100 Same as $\alpha=.01$
6	SC: $p \neq 0.13$ OC: $p=0.13$	$\begin{aligned} & \mathbf{H}_{\mathbf{0}}: \\ & p=0.13 \\ & \\ & \mathbf{H}_{\mathbf{1}}: \\ & p \neq 0.13 \end{aligned}$	$\mathbf{C V}= \pm 1.96$	$\begin{aligned} & n=400, \quad x=64 \\ & \hat{p}=64 / 400=.16 \\ & z=\frac{.16-.13}{\sqrt{\frac{.13(1-.13)}{400}}}=1.784 \end{aligned}$	ts falls not inside of $\boldsymbol{C R}$ \Rightarrow Accept $\mathbf{H}_{\mathbf{0}}$	Reject that SC: $p \neq 0.13$	0.0744 Not lower than $\alpha=.05$
7	SC: $p>0.44$ OC: $p \leq 0.44$	$\begin{aligned} & \mathbf{H}_{\mathbf{0}}: \\ & p \leq 0.44 \\ & \\ & \mathbf{H}_{\mathbf{1}}: \\ & p>0.44 \end{aligned}$	$\alpha=.01, \quad n=200$ $\mathbf{C V}=2.326$	$\begin{aligned} & n=200, \quad x=92 \\ & \hat{p}=92 / 200=.46 \end{aligned}$ $Z=\frac{.46-.44}{\sqrt{\frac{.44(1-.44)}{200}}}=0.5698$	ts falls not inside of $\boldsymbol{C R}$ \Rightarrow Accept $\mathbf{H}_{\mathbf{0}}$	Reject that SC: $p>0.44$	0.2844 Not lower than $\alpha=.01$

\mathbf{t}-Distribution for small sample $n<30$ and σ Unknown

	$\mathbf{d f}=\mathbf{n - 1}$			----	-- al	α	--------	------->	
	2-Tailed	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.005
	1-Tailed	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.0025
	Conf. Levl.	60\%	70\%	80\%	90\%	95\%	98\%	99\%	99.5\%
	1	1.376	1.963	3.078	6.314	12.706	31.821	63.656	127.321
	2	1.061	1.386	1.886	2.920	4.303	6.965	9.925	14.089
	3	0.978	1.250	1.638	2.353	3.182	4.541	5.841	7.453
	4	0.941	1.190	1.533	2.132	2.776	3.747	4.604	5.598
	5	0.920	1.156	1.476	2.015	2.571	3.365	4.032	4.773
	6	0.906	1.134	1.440	1.943	2.447	3.143	3.707	4.317
	7	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.029
	8	0.889	1.108	1.397	1.860	2.306	2.896	3.355	3.833
	9	0.883	1.100	1.383	1.833	2.262	2.821	3.250	3.690
	10	0.879	1.093	1.372	1.812	2.228	2.764	3.169	3.581
	11	0.876	1.088	1.363	1.796	2.201	2.718	3.106	3.497
	12	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.428
	13	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.372
	14	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.326
	15	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.286
	16	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.252
	17	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.222
	18	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.197
	19	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.174
	20	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.153
	21	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.135
	22	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.119
	23	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.104
	24	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.091
	25	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.078
	26	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.067
	27	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.057
	28	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.047
	29	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.038
	30	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.030
$n>30$	$n>30 \Rightarrow$ Z	0.842	1.036	1.282	1.645	1.96	2.326	2.576	2.807
	2-T	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.005
	1-T	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.0025
	Conf. Levi.	60\%	70\%	80\%	90\%	95\%	98\%	99\%	99.5\%

Hypothesis Testing on the TI-83/84

Written by Jeff O’Connell - joconnell@ohlone.edu
Ohlone College
http://www2.ohlone.edu/people2/joconnell/ti/ - A video tutorial can be found at this site
Stat vs. Data - Throughout this section the calculator will ask you if you have [Data] or [Stats]. Stats is when you just have the statistics about the data such as the mean and standard deviation. Data is when you have the actual data. In the case where you have Data, you will enter the data into a list and tell the calculator which list the data is in. Both types of examples are shown in this section.
p-values - The Calculator does hypothesis testing by finding the p-value. Recall that the p-value is the area of the tail(s) that the test statistic cuts off. If the p-value is less than the level of significance then we reject the null hypothesis, if the p-value is more that the level of significance then we fail to reject the null hypothesis.

All Confidence intervals and Hypothesis testing can be found by pressing STAT and scrolling to [TESTS]

The Population Mean

Example 1: A sample of 38 items is chosen from a normally distributed population with a sample mean of 12.5 and a population standard deviation of 2.8. At the 0.05 level of significance test the null hypothesis that the population mean is 14 , that is $\mathrm{H}_{0}: \mu=14$, $\mathrm{H}_{1}: \mu \neq 14$, with $\alpha=0.05$.

Solution: We choose [1:Z-TEST...] since we are using a z-distribution. Enter the information as shown in screen 1 below, highlight [Calculate] and press ENTER to get screen 2 or [Draw] to get screen 3.

The p-value is $0.0082<\alpha$ so we Reject H_{0}.
Example 2: A sample of 7 items is chosen from a normal distribution with the following results: $\{1,5,6,8,12,16,18\}$. Test the claim that $\mu<10$, that is $\mathrm{H}_{0}: \mu=10, \mathrm{H}_{1}: \mu<10$, with $\alpha=0.01$.

Solution: Here we are given the actual data from the sample. We can have the calculator do all of the work on the sample by entering the data into a list, say L1. We choose [2:T-TEST...]. Enter the information as shown in screen 4 below, highlight [Calculate] and press ENTER to get screen 5 or [Draw] to get screen 6 .

Screen 4

The p-value is $0.4072>\alpha$ so we Fail to Reject H_{0}. your data consists of $1,1,1,2,2,3,4$ you can enter all of the distinct the data points in L1 and the frequencies in L2. So $\mathrm{L} 1=\{1,2,3,4\}$ and $\mathrm{L} 2=\{3,2,1,1\}$. We can enter L 1 as the List and L 2 as the Freq. It will most often be the case that we will use 1 as the Freq but this option is available.

The population proportion

Example 3: For $x=14, n=35$ test the claim that $p>0.3$, that is $H_{0}: p=0.3, H_{1}: p>0.3$, with $\alpha=0.05$.

Solution: We choose [5:1-PropZTest...]. Enter the information as shown in screen 7 below, highlight [Calculate] and press ENTER to get screen 8 or [Draw] to get screen 9 .

Screen 7

The p-value is $0.0984>\alpha$ so we Fail to Reject H_{0}.
NOTE: x and n must be an integers.

Comparing two population proportions

Example 4: For $\mathrm{x}_{1}=14, \mathrm{n}_{1}=40, \mathrm{x}_{2}=17$, and $\mathrm{n}_{2}=50$ test the claim that $\mathrm{p}_{1}>\mathrm{p}_{2}$, that is $\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{2}, \mathrm{H}_{1}: \mathrm{p}_{1}>\mathrm{p}_{2}$, with $\alpha=0.1$.
Solution: We choose [6:2-PropZTest...]. Enter the information as shown in screen 10 below, highlight [Calculate] and press ENTER to get screen 11 or [Draw] to get screen 12.

Screen 10

Screen 12

Screen 11
The p-value is $0.4605>\alpha$ so we Fail to Reject H_{0}.

Hypothesis testing for two population means.

Example 5: The following samples were taken from normal distributions. Test the claim that $\mu_{1} \neq \mu_{2}$, that is $\mathrm{H}_{0}: \mu_{1}=\mu_{2}$, $\mathrm{H}_{1}: \mu_{1} \neq \mu_{2}$, with $\alpha=0.05$.

$$
\begin{array}{ll}
\bar{x}_{1}=78.5 & \bar{x}_{2}=75.3 \\
\sigma_{1}=12.8 & \sigma_{2}=11.4 \\
n_{1}=40 & n_{2}=50
\end{array}
$$

Solution: Select [3:2-SampZtest...] and enter the information shown in screen 13, highlight [Calculate] press ENTER to get the results shown in screen 14 or [Draw] to get the results in screen 15.

The p-value is $0.2162>\alpha$ so we Fail to Reject H_{0}.
Example 6: For the sample information taken from normal distributions shown in the screen to the right with L1 being sample from population 1 and L 2 from population 2 test the claim that $\mu_{1}>\mu_{2}$, that is $\mathrm{H}_{0}: \mu_{1}=\mu_{2}, \mathrm{H}_{1}: \mu_{1}>\mu_{2}$, with $\alpha=0.05$.

Solution: After entering the sample data into L1 and L2 as shown, we must determine if the variances are significantly different, that is, test the claim $\mathrm{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ against $\mathrm{H}_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$. Select [D:2-SampFTest...] and enter the information shown in screen 16 , highlight [Calculate] press ENTER to get the results shown in screen 17 or [Draw] to get the results in screen 18.

The large p-value (bigger than $\alpha=0.05$) indicated that we must "pool" the variances. If the p-value were smaller than α we would not pool the variances. Select [4:2-SampTTest...] and enter the information shown in screen 19, highlight [Calculate] press ENTER to get the results shown in screen 20 or [Draw] to get the results in screen 21.

Screen 19

Screen 20

Screen 21

The p-value is $0.5>\alpha$ so we Fail to Reject H_{0}.

ANOVA

Example 7: Consider the samples taken from three normally distributed populations shown in screen 22. Test the claim that the populations all have the same mean, that is $\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3}, \mathrm{H}_{1}$: Not all populations have the same mean, with $\alpha=0.05$.

Solution: After entering the data as shown, select [F:ANOVA(], enter the information shown in screen 23, press ENTER to get the results shown in screen 24.

Screen 22

Screen 23

Screen 24

The p-value is $0.2488>\alpha$ so we Fail to Reject H_{0}.
NOTE: To do the ANOVA test on the TI-83/84 you must have the data, not the statistics for the data.

