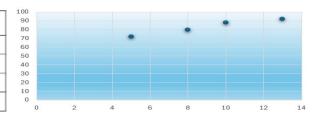
Section 3: Regression and Correlation

Objective: To see if there exists a linear relationship between x and y variables. TI83_84 Calculator

Steps to do:

- 1. Using Scatter Plot to see the possibility of any pattern and answering 4 key questions
 - a) To see if data exhibits a linear pattern or not
 - b) To see if linear pattern is positive or negative
 - c) To see how closely (strongly or perfectly) data are clustered around a straight line.
 - d) To detect any **outlier** (a point that is lying far away from the other data points).
- 2. If a linear pattern exists, find r = Correlation Coefficient and explain it.


Coefficient of correlation	Correlation Little correlation		
0.0 - ±0.2			
±0.2 - ±0.4	Weak correlation		
±0.4 - ±0.7	Correlated		
±0.7 - ±0.9	Strong correlation		
±0.9 - ±1.0	Very strong correlation		

- 3. Formulate the linear relationship by equation y = ax + b
- 4. Find \mathbf{a} =slope, \mathbf{b} = y-intercept by Formula/ $\mathbf{T183}$ 84 Calculator/Excel and make prediction.

Example 1: Is a relationship between x = hours of study and <math>y = test score? Online calculator

1) Let's look at these data and plot them in X and Y axis called it as scatter plot

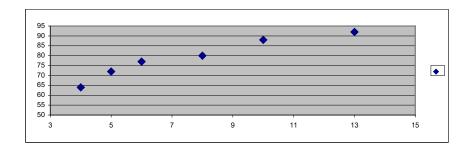
	x = Hours Study/week	y = Test Score
1	5	72
2	10	88
3	13	92
4	8	80

The pattern of data points **suggests** a strong linear positive correlation.

- 2) Find r = Correlation Coefficient by either Formula/Excel/ Tir = 0.98 because it is close to 1, it suggests a very strong positive linear correlation
- 3) Find a =slope, b = y- intercept by either Formula/Excel/ Ti

$$a = 2.59$$
, $b = 59.71$ Regression equation $y = ax + b$ $y = 2.59 x + 59.71$

- 4) Use this regression equation to make predictions
- a) If someone studied x = 12 hours, what will be his estimated test score y = 2.59 x + 59.71 y = 2.59 (12) + 59.71 = 90.71
- b) If someone studied x = 20 hours, what will be his estimated test score y = 2.59 x + 59.71 y = 2.59 (20) + 59.71 = 111.51 Impossible! Why?


Because x = 20 is outside the scope of our data.

c) How many hours x = ? does one need to study to get y = 85 on the test?

$$y = 2.59 x + 59.71$$
 85 = 2.59 (x) + 59.71 25.29 = 2.59x x = 9.76 hours

Example 2: Is a relationship between x = hours of study and <math>y = test score?

	x = Hours Study/week	y = Test Score	x^2	<i>y</i> ²	x y
1	5	72			
2	10	88			
3	13	92			
4	8	80			
5	6	77			
6	4	64			
	$\sum x = 46$	$\sum y = 473$	$\sum x^2 = 410$	$\sum y^2 = 37817$	$\sum x \ y = 3794$

Comment: A very strong positive linear correlation.

- 1. Compute the correlation coefficient and **comment** on that r = 0.963 Very strong...?
- 2. Compute the slope and y-intercept and write the equation of regression line. Slope = a = 2.92, y-itc = b = 56.41

$$y = a x + b = 2.92 x + 56.41$$

- 3. Explain the slope based on the regression equation and the in relation of x and y variables. In general, for every additional hour of study per week the score goes up by 2.92 points.
- 4. Compute average and standard deviation for both x and y variables. $\bar{x}=7.67$, $\bar{y}=78.83$, $s_x=3.386$, $s_y=10.28$
- 5. If one student studies 6 hours a week, use **Reg. Equ.** to estimate her test score. x = 6, y' = 73.93
- 6. If one student has test score of 85, use **Reg. Equ.** to estimate number of hours he spends studying per week. y = 85, x' = 9.79