Test of Hypothesis

Hypotheses about μ

Large and Small sample

P. 1) Leno Co. claims that the mean life of their batteries is at least 60 months. Test this claim with significance level $\alpha = .05$, when a sample of 36 batteries has an average life of 57.5 months with st. dev. of 16 months.

P.3) Leno Co. claims that the mean life of their batteries is more than 60 months. Test this claim when a sample of 25 batteries has an average life of 62.3 months and standard deviation of 4 months with $\alpha = .025$.

Comment: Accept or reject SC?

P. 4) Leno Co. claims that the mean life of their batteries is at most 60 months. Test this claim with significance level 0.10, if a sample of 36 batteries has mean life of 64.8 months with standard deviation of 12 months.

P.5) Leno Co. claims that their batteries have an average life of 60 months. Test this claim when a sample of 36 batteries has mean life of 57.5 months with standard deviation of 6 months. $\alpha = 0.01$

<i>SC</i> :	Ho:	n =	$\overline{x} =$	s =		
OC :	$H_{1:}$					\backslash
CV =				/		
Test Statistic = i	ts =					
Conclusion: Ac	cept or reject H ₀ ?				0	
Comment: Acc	ept or reject SC?					

P. 6) Leno Co. claims that their batteries have an average life of 60 months. Test this claim if a sample of 25 batteries has mean life of 63.5 months with standard deviation of 8 months. $\alpha = 0.05$

<i>SC</i> :	Ho:	n =	$\overline{x} =$	s =		
<i>OC</i> :	$H_{1:}$					
<i>CV</i> =						
Test Statistic = ts =						
Conclusion: Accept or	reject H ₀ ?				0	

Comment:	Accept of	or reject SC?
----------	-----------	---------------

Part 4 Practice Problems 05/11/2011

P. 7)	Leno Co claims that the mean life of their batteries is less than 60 months. Test this	claim when a sample
	of 49 batteries has mean life of 53.6 months with standard deviation of 20 months.	$\alpha = 10\%$.

SC:		Ho:	<i>n</i> =	$\overline{x} =$	<i>s</i> =	
<i>OC</i> :		$H_{1:}$				
CV=	:					
Test	Statistic= ts =					
Conc	clusion: Accept or rej	ect H_0 ?				0
Com	ment: Accept or reje	ect SC?				
P. 8)	Leno Co. claims that if a sample of 16 bat	tt the mean life of th tteries has mean life	neir batteries e of 52.4 mon	is less than 60 n ths with standa	nonths. Tes rd deviation	t this claim with $\alpha = 5\%$, n of 14 months.
SC	Ho:		n =	$\overline{x} =$	<i>s</i> =	
<i>OC</i> :	$H_{1:}$					
CV=						
Test	Statistic = ts =		_			
Conc	clusion Accept or reje	ect H ₀ ?				0
Com	ment: Accept or reje	ct SC?				
P. 9)	Leno Co. claims that a sample of 9 batterie	It the mean life of these states the states of the states a life of 62, 5	neir batteries 58, 59, 64, 63	is more than 60 , 61, 59, 62, 58	months. Te months.	est this claim with $\alpha = .10$, if
SC :	Но	:	n =	$\overline{x} =$	<i>s</i> =	
<i>OC</i> :	$H_{1:}$					
CV=						
Test,	Statistic = ts =		-			
Conc	clusion: Accept or rej	ect H_0 ?				0
Com	ment: Accept or reje	ect SC?				

Hypotheses about P (%)

P. 10) DMV claims that more than 65 % of applicants for driving tests pass the very first time. To test this claim if out of a sample of 250 applicants only 164 passed the driving test. Is DMV's claim valid? $\alpha = 0.05$,

Comment: Accept or reject SC?

P. 11) DMV claims that 65% of applicants for driving tests pass the very first time. To test this claim with $\alpha = 0.01$, out of a sample of 400 applicants 280 passed the driving test. Is DMV's claim valid?

 $\alpha = .025$ out of a sample of 300 applicants only 186 passed the driving test. Is DMV's claim valid?

SC:Ho: $n = x = \hat{p} = -$ OC:H1:Test Statistic = ts =Conclusion: Accept or reject H0?

Comment: Accept or reject **SC**?

Part 4 Practice Problems 05/11/2011

4

Two Independent Populations

P. 13) According to data published, in 2003 the average starting salary for accountant majors was \$39,560 and the starting salary for marketing majors was \$41,050. Suppose these mean starting salaries are based on a random samples of 64 accountant majors, and 81 marketing majors, and further assume that the st. deviation for the starting salaries of these majors were \$3560 and \$3880, respectively in 2003. **Test** at 1% significance level whether the 2003 mean starting salary for all accountant majors is less than that for all marketing majors.

Accountant major	(μ_1)	$n_1 =$	$\overline{x}_1 =$	$s_1 =$
Marketing majors	(μ_2)	$n_2 =$	$\overline{x}_2 =$	$s_2 =$
SC : $\mu_1 < \mu_2$ OC :		$egin{array}{c} H_0:\ H_1:\end{array}$	$egin{array}{c} H_0 & : \ H_1 : \end{array}$	
$\mathbf{CV} = \mathbf{Z} =$				

Test Statistic =
$$ts = z = \frac{(\overline{x_1} - \overline{x_2}) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} =$$

Conclusion: Accept or reject H₀?

Comment: Accept or reject **SC**?

P. 14) The management at the New Century Bank claims that the mean waiting time for all customers as its branch is not different than the Public Bank, which is its main competitor. A business consulting firm took a sample of 200 customers from the New Century Bank and found out that they waited an average of 4.5 minutes with a standard deviation of 1.2 minutes before being served. Another sample of 300 customers taken from the Public Bank showed that these customers waited an average of 4.75 minutes with a standard deviation of 1.5 minutes before being served.

Test at 2. % significance level whether the claim of the management of the New Century Bank is true.

New Century Bank	(µ1)	$n_1 =$	$\overline{x}_1 =$	$s_1 =$	
Public Bank	(µ ₂)	$n_2 =$	$\overline{x}_2 =$	$s_2 =$	
SC:	1	H ₀ :	H_0 :		
OC:	1	H ₁ :	H_1 :		
$\mathbf{CV} = Z =$					
Test Statistic = ts =	$z = \frac{(\overline{x}_1 - \overline{x}_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$\frac{(2)-0}{\frac{s_2^2}{n_2}} =$			0
Conclusion: Accort	r rajaat H ?				

Conclusion: Accept or reject **H**₀?

Comment: Accept or reject SC?

Part 4 Practice Problems 05/11/2011

Paired Samples

P. 15) A course is intended *to increase* the self-confidence of company's employees. A random sample of seven employees was evaluated for their self-confidence salesperson before and after this course. The following table shows the measured of self-confidence scores before and after this course:

The following table shows the measured of sen-confidence scores before and after this course.												
Before	8	5	4	9	6	9	5					
After	10	8	5	11	6	7	9					
									$\Sigma d =$	$\overline{d} =$	$S_{i} =$	
d=A - B											a	

 H_0 : H_1 :

Using the 5% significance level, can you conclude that attending this course increases the self-confidence of company's employees?

SC: After the course the OC.: After the course the

$$\mathbf{CV} = t =$$

Test Statistic =
$$ts = t = \frac{\sqrt{n}(\overline{d} - \mu_d)}{s_d}$$
 =
Conclusion: Accept or reject **H**₀?

Comment: Accept or reject SC?

P. 16) A company claims that its 12-week special exercise program significantly reduces weight. A random sample of six persons was selected, and these persons were put on this exercise program for 12 weeks. The following table gives the weight (in pounds) of these six persons before and after the program.

Before	180	195	177	221	208	199				
After	183	187	161	204	197	189				
d=A - B							$\Sigma d =$	\overline{d} =	$s_d =$	

 H_0 : H_1 :

Using the 1% significance level, can you conclude that attending this exercise program reduces the weight of participants?

SC: After the course the OC: After the course the CV = t =

Test Statistic =t =

Conclusion: Accept or reject H₀?

0

Multinomial

P. 17) The following table lists the grade distribution for a sample of 80 students for stat class,

Grade	Α	В	С	D	F	Total
O(Observed) = Students	16	17	18	15	14	80

Using the 5% significance level, test the hypothesis that the proportions of grades are the same for stat. students?

Hint: to find the expected values we divide total (80) by 5.

Grade	Α	В	С	D	F	Total
O(Observed) = Students	16	17	18	15	14	80
E(Expected) =Students						80
$(O-E)^2$						
$\left(O-E\right)^2/E$						$\chi^2 = \sum \frac{(O-E)^2}{E} =$

 H_{θ} :

H₁:

K= , degrees of freedom = , $\alpha = 5\%$ Critical value = $\chi^2 = Test \ statistics = \chi^2 =$

Conclusion:

Comment:

P.18) In year 2003, it is reported that based on the modes of transportation used to commute to work, 79.6% of the respondents said that they drive alone, 11.1% car pool, 5.1% use public transit, and 4.2% depend on other modes of transit. A recent 1000 randomly selected workers were asked what mode of transportation they use to commute to work. The following table lists the results of survey.

Modes of Transportation	Drive alone	Car pool	Public	Transit Other	Total
Workers (Observed) O	812	102	57	29	1000

Test at 2.5% significance level whether the current pattern of use of transportation modes is different than for 2003.

- H₀: The current percentage distribution is ...
- H₁: The current percentage distribution is ...

Modes of Transportation	Drive alone	Car pool	Public	Transit Other	Total
Workers (Observed) O	812	102	57	29	1000
Workers (Expected) E					1000
$(O-E)^2$					
$(O-E)^2 / E$					$\chi^2 = \sum \frac{\left(O - E\right)^2}{E} =$

à

0

Answers To Practice Problems

Practice 2.

SC:
$$\mu \ge 60$$
 Ho: $\mu \ge 60$ $n = 25$ $\overline{x} = 57.5$ $s = 16$
OC: $\mu < 60$ H₁: $\mu < 60$
$$\mathbf{TS} = t = \frac{\sqrt{n}(\overline{x} - \mu)}{s} = \frac{\sqrt{25}(57.5 - 60)}{16} = -0.781$$

Conclusion: Accept Ho **Comment**: Company's claim is true.

SC:
$$\mu > 60$$
 Ho: $\mu \le 60$ $n = 25$ $\overline{x} = 62.3$ $s = 4$
OC: $\mu \le 60$ H₁: $\mu > 60$
CV = $t = 2.064$ TS: $= t = \frac{\sqrt{n}(\overline{x} - \mu)}{s} = \frac{\sqrt{25}(62.3 - 60)}{4} = 2.875 \Rightarrow It falls inside CR$
Conclusion: Reject Ho Comment: Company's claim is true 0 2.064
Practice 4. SC: $\mu \le 60$ Ho: $\mu \le 60$ $n = 36$ $\overline{x} = 64.8$ $s = 12$
OC: $\mu > 60$ H₁: $\mu > 60$
CV = $z = 1.282$ Test Statistic: $z = \frac{\sqrt{36}(64.8 - 60)}{12} = 2.4 \Rightarrow It falls inside CR$
Conclusion: Reject Ho Comment: Company's claim is false.
Practice 5.
SC: $\mu = 60$ Ho: $\mu = 60$ $n = 36$ $\overline{x} = 57.5$ $s = 6$
OC: $\mu \neq 60$ H₁: $\mu \neq 60$
CV = $z = \pm 2.575$
TS = $z = \frac{\sqrt{36}(57.5 - 60)}{6} = -2.5$ \Rightarrow Falls not inside CR
Conclusion: Accept Ho

Comment: Accepting that the mean life of batteries is 60 months, so company's claim is true.

Part 4Practice Problems05/11/2011

$$\geq 60 \qquad H_{1:} \ \mu < 60$$

$$z = -1.28$$

$$= \frac{\sqrt{49}(53.6 - 60)}{20} = -2.24 \implies lt falls inside CR$$
asion: Reject Ho
Comment: Accept the company's claim.
$$xe 8.$$

$$z < 60 \qquad Ho: \ \mu \ge 60 \qquad n = 16 \qquad \overline{x} = 52.4 \qquad s = 10$$

$$t = -1.753$$

$$t = \frac{\sqrt{16}(52.4 - 60)}{14} = -2.17 \implies lt falls inside CR$$
asion: Reject Ho
Comment: Accept the company's claim.
$$xe 9.$$

$$> 60 \qquad Ho: \ \mu \le 60 \qquad n = 9 \qquad \overline{x} = 60.66 \qquad s = 10$$

$$\leq 60 \qquad H_{1:} \qquad \mu > 60$$

$$= 1.397 \qquad TS = = t = \frac{\sqrt{9}(60.66 - 60)}{2.24} = 0.884 \implies Falls not inside CR$$
asion: Accept Ho
Comment: Reject the company's claim.
$$Practice Problems \qquad 05/11/2011$$

Conclusion: Reject Ho **Comment**: Reject the company's claim

Practice 7.

 $TS = t = \cdot$

SC: $\mu < 60$ **ΟC**: *μ*

CV = z

TS = z

 $\frac{\sqrt{25}(63.5-60)}{8} = 2.19 \implies \text{It falls inside CR}$

Ho: $\mu \ge 60$

Conclu

Practic

SC: *μ* **ΟC**: μ

CV: =

TS =
$$t = \frac{\sqrt{16}(52.4 - 60)}{14} = -2.17 \implies$$
 It falls inside CR

Conclu

Practic

SC: *μ* **ΟC**: *μ*

$$CV = t = 1.397$$
 $TS = t = \frac{\sqrt{9}(60.66 - 60)}{2.24} = 0.884$ \implies Falls not inside Ch

Conclu

n = 25 $\overline{x} = 63.5$

 $\bar{x} = 53.6$

n = 49

Practice 6.

SC: $\mu = 60$ Ho: $\mu = 60$ **OC**: $\mu \neq 60$ H_{1:} $\mu \neq 60$

 $CV = = \pm 2.064$

 $\hat{p} = \frac{280}{400} = 0.7$ **SC**: P = 0.65Ho: P = 0.65n = 400x = 280**OC**: *P* ≠ 0.65 $H_{1:} P \neq 0.65$ А $CV = z = \pm 2.575$ R **TS:** $Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{\sqrt{\frac{.65(1-.65)}{.0238}}}}} = \frac{.05}{.0238} = 2.10 \implies$ Falls not inside CR 2.575 0 2.575 **Conclusion**: Accept Ho Comment: DMV's claim is true Practice 12. SC: $P \le 0.55$ Ho: $P \le 0.55$ OC: P > 0.55H₁: P > 0.55n = 300 x = 186 $\hat{p} = 186 / 300 = 0.62$ CV = Z = 1.96Α R **TS**: $Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{200}}} = \frac{0.62 - 0.55}{\sqrt{\frac{.55(1-.55)}{200}}} = \frac{0.07}{.0287} = 2.44 \implies \text{It falls inside CR}$ 1.96 Conclusion: Reject Ho Comment: DMV's claim is false. **Two Independent Populations** Practice 13. (μ_1) $n_1 = 64$ $\overline{x}_1 = 39560$ $s_1 = 3560$ (μ_2) $n_2 = 81$ $\overline{x}_2 = 41050$ $s_2 = 3880$ Accountant major Marketing majors

Hypotheses about P (%)

- **SC**: $\mu_1 < \mu_2$ $H_0: \mu_1 \ge \mu_2$ $H_0: \mu_1 \mu_2 \ge 0$
- **OC:** $\mu_1 \ge \mu_2$ $H_1: \mu_1 < \mu_2$ $H_1: \mu_1 \mu_2 < 0$

Critical value (From Table) $\mathbf{Z} = -2.326$

Practice 11.

$$\mathbf{TS} = z = \frac{(\overline{x_1} - \overline{x_2}) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{(39560 - 41050) - 0}{\sqrt{\frac{3560^2}{64} + \frac{3880^2}{81}}} = -2.4$$

 \Rightarrow It falls inside CR Conclusion: Reject H_0

Part 4Practice Problems05/11/2011

Comment: Accept that $\mu_1 < \mu_2$

Practice 14.

New Century Bank	(µ1)	$n_1 = 200$	$\bar{x}_1 = 4.5$	$s_1 = 1.2$		
Public Bank	(µ ₂)	$n_2 = 300$	$\bar{x}_2 = 4.75$	<i>s</i> ₂ = 1.5		
SC : $\mu_1 = \mu_2$		$H_0: \mu_1 = \mu_2$	H_{0} : μ	$u_1 - \mu_2 = 0$		
OC: $\mu_1 \neq \mu_2$		$H_1: \mu_1 \neq \mu_2$	H_1 : μ	$u_1 - \mu_2 \neq 0$		\backslash
Critical value (From 7	Table) $\mathbf{Z} = \mathbf{z}$	± 2.326		1	/	
$\mathbf{TS} = z = \frac{(\overline{x}_1 - \overline{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$	$=\frac{(4.5-4.7)}{\sqrt{\frac{1.2^2}{200}}}$	$\frac{5)-0}{\frac{1.5^2}{300}} = \frac{-0.25}{.1212} = -2.$	$06 \Rightarrow Falls not$	t inside CR R	A	
				-2.3	26 0	2.326

Conclusion: Accept Ho **Comment:** The claim of the management of the New Century Bank is true.

Paired Samples

Practice 15.

Before	8	5	4	9	6	9	5				
After	10	8	5	11	6	7	9				
d=A - B	2	3	1	2	0	-2	4	$\Sigma d = 10$	$\bar{d} = 1.429$	$s_d = 1.988$	

 μ_d = Average increase in self- confidence

SC: After the course the self-confidence of company's employees increases.

CC.: After the course the self-confidence of company's employees does not increase or remains the same.

SC:
$$\mu_d > 0$$
 Ho: $\mu_d \le 0$

OC:
$$\mu_d \le 0$$
 H₁: $\mu_d > 0$
CV (From Table) $t = 1.943$

$$TS = t = \frac{\sqrt{n}(\bar{d} - \mu_d)}{s_d} = \frac{\sqrt{7}(1.429 - 0)}{1.988} = 1.90 \implies Falls \text{ not inside } CR$$

Conclusion: Accept Ho

Comment: After the course the self-confidence of company's employees does not increase or remains the same. **Practice 16**.

Before	180	195	177	221	208	199	
After	183	187	161	204	197	189	
d=A - B	3	- 8	- 16	-17	- 11	- 10	$\Sigma d = -59 \qquad \overline{d} = -9.833 \qquad s_d = 7.19$
							Average weight loss $= \mu_d$
SC: This exe	ercise p	rogram i	educes t	he weigl	nt of part	ticipants	ts?
OC: This exe	ercise pi	rogram c	loes not	reduce tl	he weigh	t of par	rticipants?
SC : $\mu_d < 0$			Ho:	$\mu_d \ge 0$			
OC : $\mu_d \ge 0$			H_{1} :	$\mu_d < 0$			
CV (From Ta	able)	<i>t</i> =	3.36	5			RA
$TS = t = \frac{\sqrt{r}}{2}$	$\overline{n}(\overline{d}-\mu)$	$\left(\frac{u_d}{u_d}\right) = \sqrt{\frac{1}{2}}$	<u>6(-9.83</u> 7.19	$\frac{33-0)}{9} =$	=-3.34	9 =	$\Rightarrow Falls not inside CR -3.365 0$
Conclusion:	Accept	Ho	Comm	e nt: Thi	s exercis	se progr	ram does not reduce the weight of participants?

Multinomial

Practice 17. The following table lists the grade distribution for a sample of 80 students for stat class	ce 17. The following table lists the grade distribution for a sample of 80 students for s	tat class,
---	---	------------

Grade	Α	В	С	D	F	Total
O(Observed)=Students	16	17	18	15	14	80
E(Expected) =Students	16	16	16	16	16	80
$(Q-E)^2$	$(16-16)^2$	$(17-16)^2$	$(18-16)^2$	$(15-16)^2$	$(14-16)^2$	
	0	1	4	1	4	
$(O-E)^2 / E$	0/16 + 0 +	1/16 0.0625 +	$+ \frac{4}{16} + \frac{4}{16$	$\frac{1}{16} + 0.0625 + 0$	4/16 .25 = 0.625	$\chi^2 = \sum \frac{(O-E)^2}{E} = 0.625$

H₀: Proportions of students getting different grades are the same?

H₁: Proportions of students getting different grades are **not** the same?

K= 5, degrees of freedom = 5-1=4 , $\alpha = 5\%$ CV = $\chi^2 = 9.4877$

Test statistics = $\chi^2 = \sum \frac{(O-E)^2}{E} = 0.625 \implies$ Falls not inside CR 0 **Comment:** Proportions of students getting different grades are the same. Conclusion: Accept Ho

Practice 18:

Practice Problems Part 4 05/11/2011 Α

Modes of Transportation	Drive alone	Car pool	Public	Transit Other	Total
O (Observed)=Workers	812	102	57	29	1000

Test at $\alpha = 2.5\%$ whether the current pattern of use of transportation modes is different than for 2003.

H₀: The current percentage distribution is the same as year 2003.

H₁: The current percentage distribution is different from year 2003.

Modes of Transportation	Drive alone	Car pool	Public	Other	Total
	010	100		20	1000
O (O bserved)=Workers	812	102	57	29	1000
E(Expected)=Workers	.796(1000)	.111(1000)	051(1000)	.042(1000)	1000
	796	111	51	42	
$(Q-E)^2$	$(812-796)^2$	$(102-111)^2$	$(57-51)^2$	$(29-42)^2$	
$(0 \ L)$	256	81	36	169	
$(Q-E)^2 / E$	256/796 +	81/111 -	+ 36/51	+ 169/42	$(O - F)^2$
$(0 \ E) \ / E$	0.322 +	0.730 -	⊦ 0.706	+ 4.24 = 5.782	$\chi^2 = \Sigma \frac{(0-E)}{2} = 5.782$
					Ε

K= 4, degrees of freedom = 4-1 = 3, α = .025 Critical value = χ^2 = 9.348 Test statistic = χ^2 = 5.782

Conclusion: Accept H_0 , Therefore the current percentage distribution is the same as year 2000.

Comment: Accepting that the current percentage distribution is the same as year 2003.

