Abe Mirza

Sample Final

Statistics

A. Given the data set of *ages of people* with diabetes

19, 16, 48, 23, 51, 19, 29, 16, 18, 42, 37, 27, 45, 18, Compute the following

1. Mean: $\overline{x} = 29.14$ **2.** Median: 25 **3.** Mode: 16,18,19 **4.** Variance: 165.64 **5.** St. Dev: 12.87 **6.** Q1, Q2, Q3:18,25,42

7. Draw the Box- Plot and **comment** on it : *Ans: Skewed to the right*.

8. Apply all three empirical rules. $68\% = 29.14 \pm 12.87$, $95\% = 29.14 \pm 2(12.87)$, $99.7\% = 29.14 \pm 3(12.87)$,

B. A Marketing firm wished to determine whether or not the number of television commercials broadcast was											
linearly correlated to the sales o	f its pro	duct.	The data	, from	several	cities, are	show	n in the	followi	ng table	,
X= # of TV Commercials	12	6	9	15	11	15	8	16	12	6	
Y= Sales Unit(Y)	17	15	11	16	13	10	5	12	14	9	

9. Use the data and plot the data as a scattered diagram and <u>comment</u> on the pattern of the points.

10. Compute the correlation coefficient and <u>comment</u> on that. Ans: r = 0.3172, No correlation

11. Compute slope and y-intercept and write the equation of regression line: a = .3115, b = 8.773, y = .311b + 8.773

12. Compute mean and standard deviation for both x and y variables: $\overline{x} = 11$, $\overline{y} = 12.2$, $s_x = 3.68$, $s_y = 3.61$

13. If no. of TV Commercials is 10, then use regress. Eq. and estimate sales. y' = .31(10) + 8.773 = 11.875

14. If sales is 13 units, then use regression Eq. and estimate no. of TV commercials. $13 = .31x' + 8.773 \Rightarrow x' = 13.63$

4	n	
•	U •	

Time(sec)	f	m	$f \times m$	$f \times m^2$
6 - 12	14			
12 - 18	8	15		
18 - 24	20		420	
24 - 30	6			
30 - 36	30			
36 - 42	14	39		
42 - 48	16		720	
48 - 54	12			
			3696	

Draw the

15. Histogram (write your observation)16. Frequency polygonCompute.

17. Mean? $\bar{x} = 30.8$	18 .	Standard deviation? 12.92	19 .	Variance?	166.95
20 . Apply all three empirical	rules.	$68\% = 30.8 \pm 12.92,$	$95\%=30.8\pm$	2(12.92),	$99.7\% = 30.8 \pm 3(12.92),$

21) By decreasing the sample size what will happen to the proportion confidence interval (becomes wider/narrower)? For answer refer to part 3

22) By increasing the confidence level what will happen to the mean confidence interval (wider/narrower)? For answer refer to part 3

D. If out of 12 men and 14 women we select two people at random, find the probability that
23. Both men: 24. Both women: 25. One of each: Answer: at the bottom of page 2

E. If out of 10 Red balls and 12 Black balls we select two balls at random with replacement, find the probability that 26. Both Red: 27. Both black: 28. One of each: Answer: at the bottom of page 2

F. Give an example of each sampling methods.H. What z-score value is considered to be unusual?G. What the outlier means in a regression problem?I. What ordinary and unusual z-values mean?

What z-scole value is considered to be unusual? **1.** What ordinary and unusual z-values mea

- J. What standard deviation is trying to measure? Give an example, and explain how it can be useful.
- K. Give two examples of positively and two examples of negatively correlated variables.
- L. What significant information histogram, box-plot curve intends to provide?
- 1. If 30 college students out of 80 graduate in 2 years, then by using 95% confidence level find the confidence interval for the proportion of all college students who graduate in 2 years. $\hat{p} = 37.5\%$, E = 10.61% 26.89 < P < 48.11
- 2. If 40 college students out of 120 graduate in 2 years, then by using 90% confidence level find the confidence interval for the proportion of all college students who graduate in 2 years. $\hat{p} = 33.3\%$, E = 7.08 = 26.22 < P < 40.38
- 3. The scores for the test # 3 from Abe's stat classes from 8 randomly selected students are as such 84, 79, 95, 91, 75, 88, 78, 82. Find the confidence interval for the mean score for test # 3 for all Abe's stat classes.

$$E = 2.365 \frac{6.8868}{\sqrt{8}} = 5.7584 \quad \mu = 84 \pm 5.7584, \quad 78.2416 < \mu < 89.7584$$

- 4. How large should the sample size be if we want to estimate the true average time to finish a refinance application with 90% confidence level with a st. dev of 26 and the error is accepted to be 3 min? n = 203
- 5. How large should the sample size be if we want to estimate the true mean time to finish a refinance application with 90% confidence level when previous study results with a st. dev of 26 and the maximum error is accepted to be 1.5 min.? What happened to sample size when error was cut in half? n = 813
- 6. According to AMA. The average annual earnings of radiologists in the US is \$280,000 and those of surgeons are \$265,000. Suppose that these means are based on random samples of 380 radiologists and 450 surgeons and that the population standard deviations of the annual earnings of radiologists and surgeons are \$31,000 and \$33,000. Construct a 94 % construct interval for the difference between the annual earnings of radiologists and surgeons. $\mu_1 \mu_2 = 15000 \pm 4184$, $10,816 < \mu_1 \mu_2 < 19,184$
- 7. A poll finds that 43% of population approves of the job that the President is doing: The poll has a margin of error 4.5%. Find a 90% confidence interval for the percentage of population that approves President's performance. What was the sample size for this poll? n = 328

8. In a random sample of 1600 people from a large city, it is found that 900 support the mayor in the upcoming election. Based on this sample and using 95 % confidence level , would you claim that the mayor will win a majority of the vote? Explain

 $\hat{p} = 56.25\%, \quad E = 2.43 \qquad 53.82\% < P < 68.68\%$ Answer: Both men: $\frac{12}{26} \frac{11}{25} = 20.31\%$ 24. Both women: $\frac{14}{26} \frac{13}{25} = 28\%$ 25. One of each: $\frac{12}{26} \frac{14}{25} + \frac{14}{26} \frac{12}{25} = 51.59\%$ Answ: 26. Both Red: $\frac{10}{22} \frac{10}{22} = 20.66\%$ 27. Both black: $\frac{12}{22} \frac{12}{22} = 29.75\%$ 28. One of each: $\frac{10}{22} \frac{12}{22} = 49.594\%$

Also Review Sample Tests #1, #3, # 4 from class website.

Last Update: 12/05/2012