\qquad
\qquad
\qquad

12	6	13	25	10	17	11	8	21	14	10	33	16	6	18	21

For the above data that represent the homework scores, Use calculator TI-83 or TI-84 to find

1) Mean, (Round in 2 decimal)
2) Median, (Round in 2 decimal)
3) Q1, (Round in 2 decimal)
4) Q3, (Round in 2 decimal)
5) Standard deviation, (Round in 2 decimal)
6) Variance, (Round in 2 decimal)
7) Apply 68\% empirical Rule, (Round in 2 decimal)
8) Apply 95% empirical Rule, (Round in 2 decimal)
9) \qquad
10) \qquad
11) \qquad
12) \qquad
13) \qquad
14) \qquad
15) \qquad
16) \qquad
17) Use the number line at bottom to do a Dot Plot for above data and comment on its distribution.

6	8	10	12	14	16	18	20	22	24	26	28	30

10) Compare your answers on parts 1 through 4 with practice \# 1 and draw conclusion.
11) Below is the picture of locations of mean, mode and median for centered and skewed to the right histogram. Sketch a skewed to the left histogram and draw and label mean, mode and median.

B: Use both formula and the Ti Calculator to find the mean, standard deviation and the variance for the following data $7,6,3,9,12,5$, and also draw the dot-plot.

x	$\bar{x}=\frac{\sum x}{n}=$	$(x-\bar{x})$	$(x-\bar{x})^{2}$
7			
6			
3			
9			
12			$\sum(x-\bar{x})^{2}=$
5			
$\sum x=$			

$S=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{V}{}}=\sqrt{ } \quad \quad$ Variance $=s^{2}=$
Apply 68\% empirical rule to data in Problem B

Apply 95\% empirical rule to data in Problem B
C. Use both formula and the Ti Calculator to find the mean, and only Ti Calculator to find the standard deviation and the variance

Test Scores	Frequency $=f$	midpoint m	$f \times m$	$f \times m^{2}$
$0-8$	12			
$8-16$	20			
$16-24$	32			
$24-32$	22			
$32-40$	14			
	$\sum f=n=$			

Mean: $\bar{X}=\frac{\sum f \times m}{n}=\square \quad$ Stand Dev: $S=\sqrt{\frac{n \sum f \times m^{2}-\left(\sum f \times m\right)^{2}}{n(n-1)}}=\sqrt{ }=$

Apply 68\% empirical rule to data in Problem C

Apply 95\% empirical rule to data in Problem C
\qquad
\qquad Name: \qquad

12	6	13	25	10	17	11	8	21	14	10	33	16	6	18	21

For the above data that represent the homework scores, Use calculator TI-83 or TI-84 to find

1) Mean, (Round in 2 decimal)
2) 15.06
3) Median, (Round in 2 decimal)
4) 13.50
5) Q1, (Round in 2 decimal)
6) 10
7) Q3, (Round in 2 decimal)
8) 19.5
9) Standard deviation, (Round in 2 decimal)
10) 7.31
11) Variance, (Round in 2 decimal)
12) 53.40
13) Apply 68% empirical Rule, (Round in 2 decimal) $15.06 \pm 1(7.31)$
14) 7.75 to 22.37
15) Apply 95% empirical Rule, (Round in 2 decimal) $15.06 \pm 2(7.31)$
16) 0.44 to 29.68
17) Use the number line at bottom to do a Dot Plot for above data and comment on its distribution.

6	8	10	12	14	16	18	20	22	24	26	28

Distribution of data is Skewed to the right.

10) Compare your answers on parts 1 through 4 with practice \# 1 and draw conclusion.

Compared with practice 1 every data is increased by 2, and the answers for mean, mode Q1, Q2, and Q3 all increased by 2 .
11) Below is the picture of locations of mean, mode and median for centered and skewed to the right histogram. Sketch a skewed to the left histogram and draw and label mean, mode and median.

B: Use both formula and the Ti Calculator to find the mean, standard deviation and the variance for the following data $7,6,3,9,12,5$, and also draw the dot-plot.

x	$\bar{x}=\frac{\sum x}{n}=$	$(x-\bar{x})$	$(x-\bar{x})^{2}$
7	7	0	0
6	7	-1	1
3	7	-4	16
9	7	2	4
12	7	5	25
5	7	-2	4
$\sum x=$			$\sum(x-\bar{x})^{2}=50$

$S=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{50}{6-1}}=\sqrt{10}=3.16$
Variance $=s^{2}=10$

Apply 68% empirical rule to data in Problem B: $7 \pm 1(3.16)$ or $(3.84,10.16)$
Apply 95% empirical rule to data in Problem B: $7 \pm 2(3.16)$ or $(0.68,13.32)$
C. Use both formula and the Ti Calculator to find the mean, and only $\underline{\mathrm{Ti} \text { Calculator to find the standard deviation and }}$ the variance

Test Scores	Frequency $=f$	midpoint m	$f \times m$	$f \times m^{2}$
$0-8$	12	4	48	192
$8-16$	20	12	240	2880
$16-24$	32	20	640	12800
$24-32$	22	28	616	17248
$32-40$	14	36	504	18144
	$\sum f=n=100$		$\sum f \times m=2048$	$\sum\left(f \times m^{2}\right)=51264$

Mean: $\bar{X}=\frac{\sum f \times m}{n}=\frac{2048}{100}=20.48 \quad$ Stand Dev:
$S=\sqrt{\frac{n \sum f \times m^{2}-\left(\sum f \times m\right)^{2}}{n(n-1)}}=\sqrt{\frac{100(51264)-(2048)^{2}}{100(100-1)}}=\sqrt{\frac{932096}{9900}}=\sqrt{94.15}=9.70$
Apply 68\% empirical rule to data in Problem C $\quad 20.48 \pm 1(9.70)$
$(10.78,30.18)$
Apply 95\% empirical rule to data in Problem C
$20.48 \pm 2(9.70)=20.48 \pm 19.4$
$(1.08,39.88)$

