\qquad
Help can be found in class lecture, topics review or related PowerPoints
a) What do we estimate? Population mean ($\boldsymbol{\mu}$) or sample mean (\bar{x}) or both?
b) Why do we need to estimate? Cite some reasons?
c) What is the point estimate?
d) What is the confidence level?
e) What is the criteria of t-distribution?
f) Under what condition we use t-distribution?
g) What is the formula for degree of freedom $d f=$?
h) What is the margin of error and what are three different possible formulas for it?
i) Where you can find the z table and under what condition you will be using this table?
j) Where you can find the \boldsymbol{t} table and under what condition you will be using this table?
k) What is the width of a confidence interval?
l) How can we use the upper and lower boundaries of a confidence interval to find point estimate?
m) How can we use the error bounds of a confidence interval to find margin of error?
n) How to use TI calculator to find the boundaries of a confidence interval when we use normal distribution?
o) How to use TI calculator to find the boundaries of a confidence interval when we use \mathbf{t}-distribution?

YouTube TI Calculator: https://www.youtube.com/watch?v=pjMRC8q6HyE General introduction
YouTube TI Calculator: https://www.youtube.com/watch?v=H3uU-Tx2Yq0 General introduction
YouTube TI Calculator: https://www.youtube.com/watch?v=iE8v2RYAnJg Using t-distribution with data YouTube TI Calculator https://www.youtube.com/watch?v=gR8pHFZ4pYw Using t-distribution with data

For the following problems decide to z or t value or neither?

1) Sample size $n=10, \sigma=4$ and the population is normally distributed?
2) Sample size $\boldsymbol{n}=\mathbf{1 0}, \boldsymbol{s}=\mathbf{4}$ and the population is normally distributed?
3) Sample size $\boldsymbol{n}=\mathbf{2 8}, \sigma=\mathbf{4}$ and the population is normally distributed?
4) Sample size $\boldsymbol{n}=\mathbf{1 0 0}, \boldsymbol{s}=\mathbf{4}$ and the population is normally distributed?
5) Sample size $\boldsymbol{n}=\mathbf{4}, \boldsymbol{s}=\mathbf{1 0 0}$ and the population is normally distributed?
1. Fill in the blanks with on of the following: increases, decreases, or stays the same where $E=z \frac{\sigma}{\sqrt{n}}$.
a) As the sample size (n) increases, the margin of error (E) \qquad .
b) As the confidence level (C) increases, the margin of error (E) \qquad .
c) As the standard deviation (σ) increases, the margin of error (E) \qquad .
A) $\bar{x} \pm Z_{\alpha / 2}\left(\frac{\sigma}{\sqrt{n}}\right)$
B) $\quad \bar{x} \pm z_{\alpha / 2}\left(\frac{s}{\sqrt{n}}\right)$
C) $\bar{x} \pm \boldsymbol{t}_{\alpha / 2, d f}\left(\frac{s}{\sqrt{n}}\right)$
2. A company that produces white bread is concerned about the distribution of the amount of sodium in its bread. The company takes a simple random sample of $\mathbf{1 0 0}$ slices of bread and computes the sample mean to be $\mathbf{1 0 3}$ milligrams of sodium per slice. Construct a 95% confidence interval for the unknown mean sodium level assuming that the population standard deviation is $\mathbf{1 0}$ milligrams.
$E=$

$$
\mu=
$$

$$
101.04<\mu<104.96
$$

3. A company that produces white bread is concerned about the distribution of the amount of sodium in its bread. The company takes a simple random sample of $\mathbf{1 6}$ slices of bread and computes the sample mean to be $\mathbf{1 0 3}$ milligrams of sodium per slice. Construct a 95% confidence interval for the unknown mean sodium level assuming that the sample standard deviation is $\mathbf{1 0}$ milligrams.
$E=\quad \mu=\quad 97.76<\mu<108.33$
4. The football coach randomly selected eight players and timed how long it took to perform a certain drill. The times in minutes were: $10,6,8,7,6,5,7,8$. Assuming that the times follow a normal distribution, find a 95% confidence interval for the population mean. $\bar{x}=\quad s=$
$E=\quad \mu=\quad 5.83<\mu<8.42$
5. A company that produces white bread is concerned about the distribution of the amount of sodium in its bread. The company takes a simple random sample of 36 slices of bread and computes the sample mean to be 103 milligrams of sodium per slice. Construct a 95% confidence interval for the unknown mean sodium level assuming that the sample standard deviation is 10 milligrams.
$E=\quad \mu=\quad 99.73<\mu<106.27$
6. You work for a consumer advocate agency and want to find the mean repair cost of a washing machine. In the past, the standard deviation of the cost of repairs for washing machines has been $\$ 17.50$. As part of your study, you randomly select 40 repair costs and find the mean to be $\$ 100.00$. Calculate a 90% confidence interval for the population mean.
$E=\quad \mu=\quad 95.45<\mu<104.55$
7. The actual time it takes to cook a ten-pound turkey is a normally distributed. Suppose that a random sample of 19 ten pound turkeys is taken. Given that an average of 2.9 hours and a standard deviation of .24 hours was found for a sample of 19 turkeys, calculate a 90% confidence interval for the average cooking time of a tenpound turkey.

$$
E=\quad \mu=\quad 2.80<\mu<2.96
$$

8) On day two of a study on body temperatures, 106 temperatures were taken. Suppose that we only have the first 25 temperatures to work with. The mean and standard deviation of these 25 scores were $98.44^{\circ} \mathrm{F}$ and $0.30^{\circ} \mathrm{F}$, respectively. Construct a 95% confidence interval for the mean of all body temperatures.

$$
E=\quad \mu=\quad 98.32<\mu<98.56
$$

9) Given the estimated mean of a population as $40<\mu<68$, to find \bar{x} and E Ans: $\bar{x}=54$ and $E=14$
10) Given the estimated mean of a population as $84.56<\mu<98.36$, to find \bar{x} and E Ans: $\bar{x}=91.46$ and $E=6.9$
