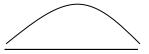
Hypothesis Testing Procedure

- Step 1: Read the claim and write SC and OC
- **Step 2:** H_0 (must have $= \mathbf{or} \le \mathbf{or} \ge$) and H_1 (must have $\ne \mathbf{or} > \mathbf{or} <$)

Based on H_1 decide if it is (left tailed test, right tailed test, or two tailed test).


- <u>Step 3</u>: Find the critical value (z or t by using Table 2) and label the region as R for rejection or A for acceptance of H_0
- Step 4: Test statistics =TS = $\frac{\sqrt{n(\overline{x} \mu)}}{\sqrt{n(\overline{x} \mu)}}$
- Step 5: Conclusion: Accept or reject H_0 ? (H_0 will be rejected if TS falls in critical region otherwise accepted)
- Step 6: Comment: Accept or reject SC? Hint: If H_0 and SC are similar same decision otherwise different decision.
- Step 7: P-value is the area from test statistics and graphically, it is on the same side of critical value and it can be found by using your TI calculator.
- **Problem 1.** At $\alpha = 0.05$, test the claim that average life of "Cyan" batteries exceeds 50 months. A sample of 64 batteries had a mean of 53 months with standard deviation of 9.5 months.
- SC: μ
- Ho: u

$$n =$$

0C: μ

 $H_{1:} \mu$

(left tailed test or two tailed test or right tailed test)

$$\alpha = \text{ and } n = \text{ then } CV =$$

then
$$CV =$$
 $TS = \frac{\sqrt{n}(\overline{x} - \mu)}{s} =$ $=$

Conclusion: Accept or reject H_0

Comment: Accept or reject SC

P-Value =

α

- **Problem 2.** At $\alpha = 0.05$, test the claim that average life of "Cyan" batteries exceeds 50 months. A sample of 9 batteries had a mean of 53 months with standard deviation of 9.5 months.
- SC: μ
- Ho: *μ*
- $\overline{x} =$ s =

- **0C**: μ
- $H_{1:} \mu$
- (left tailed test or two tailed test or right tailed test)

$$\alpha = \text{ and } n = \text{ then } CV =$$

$$TS = \frac{\sqrt{n}(\overline{x} - \mu)}{s} = \frac{1}{s}$$

Conclusion: Accept or reject H_0

Comment: Accept or reject SC

P-Value =

α

- **Problem 3.** At $\alpha = 0.05$, test the claim that average life of "Cyan" batteries is 50 months. A sample of 49 batteries had a mean of 54 months with standard deviation of 9.5 months.
- SC: μ
- Ho: *μ*
- $\overline{x} =$

$$s =$$

0C: μ

 H_{1} . μ

(left tailed test or two tailed test or right tailed test)

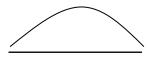
$$\alpha =$$
 and $n =$ then $CV =$

$$TS = \frac{\sqrt{n}}{2}$$

 $TS = \frac{\sqrt{n(\overline{x} - \mu)}}{s} = \frac{1}{s}$

α

- **Conclusion**: Accept or reject H_0
- Comment: Accept or reject SC


Problem 4. At $\alpha = 0.05$, test the claim that average life of "Cyan" batteries is different than 50 months. A sample of 9 batteries had a mean of 55 months with standard deviation of 9.5 months.

$$n = \overline{x} = s$$

0C: μ

$$H_{1:} \mu$$

(left tailed test or two tailed test or right tailed test)

$$\alpha =$$
 and $n =$

TS=
$$\frac{\sqrt{n}(\overline{x}-\mu)}{s}$$
 = _____ =

Conclusion: Accept or reject H_0

α

Problem 5. At $\alpha = 0.01$, test the claim that average life of "Cyan" batteries is at most 50 months. A sample of 49 batteries had a mean of 53 months with standard deviation of 8.8 months.

$$n =$$


$$\overline{x} =$$

$$s =$$

0C: μ

$$H_{1:} \mu$$

(left tailed test or two tailed test or right tailed test)

$$\alpha =$$
 and $n =$

then
$$CV =$$

$$TS = \frac{\sqrt{n}(\overline{x} - \mu)}{s} = \frac{1}{s}$$

Conclusion: Accept or reject H_0

Comment: Accept or reject SC

P-Value =

 α

Problem 6. At α = 0.01, test the claim that average life of "Cyan" batteries is at most 50 months. A sample of 16 batteries had a mean of 53 months with standard deviation of 9.4 months.

SC:
$$\mu$$

$$n = \overline{x} =$$

$$H_{1:} \mu$$

(left tailed test or two tailed test or right tailed test)

$$\alpha =$$
 and $n =$ then $CV =$

then
$$CV =$$
 $TS = \frac{\sqrt{n}(\overline{x} - \mu)}{s} =$ $=$

Conclusion: Accept or reject H_0

Comment: Accept or reject SC

P-Value =

α

Problem 7. At $\alpha = 0.10$, test the claim that average life of "Cyan" batteries is at least 50 months. A sample of 36 batteries had a mean of 46 months with standard deviation of 10 months.

$$SC$$
: μ

Ho:
$$\mu$$


$$n = \overline{x} =$$

$$s =$$

0C: μ

 $H_{1:} \mu$

(left tailed test or two tailed test or right tailed test)

$$\alpha = \text{ and } n = \text{ then } CV =$$

$$\mathsf{TS} = \frac{\sqrt{n}(\overline{x} - \mu)}{s} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

α

Problem 8: At $\alpha = 0.10$, test the claim that average life of "Cyan" batteries is at least 50 months. A sample of 16 batteries had a mean of 47 months with standard deviation of 10 months.

$$n = \overline{x} = s = s = s$$

$$H_{1:} \mu$$

(left tailed test or two tailed test or right tailed test)

$$\alpha =$$
 and $n =$ then

$$TS = \frac{\sqrt{n}(\overline{x} - \mu)}{s} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Conclusion: Accept or reject H_0

α

Problem 9: At $\alpha = 0.025$, test the claim that average life of "Cyan" batteries is less than 50 months. A sample of 36 batteries had a mean of 46 months with standard deviation of 12 months.

$$n =$$

$$\overline{x} = s = s = s$$

$$H_{1:} \mu$$

(left tailed test or two tailed test or right tailed test)

$$\alpha = \text{ and } n = \text{ then } CV =$$

$$TS = \frac{\sqrt{n}(\overline{x} - \mu)}{s} = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$$

Conclusion: Accept or reject H_0

α

Problem 10: At $\alpha = 0.025$, test the claim that average life of "Cyan" batteries is **less than** 50 months. A sample of 16 batteries had a mean of 48 months with standard deviation of 13 months.

SC:
$$\mu$$

$$=$$
 $\overline{x} =$

$$s =$$

0C: μ

$$H_{1:} \mu$$

(left tailed test or two tailed test or right tailed test)

$$\alpha = \text{ and } n = \text{ then } CV =$$

then
$$CV =$$
 TS= $\frac{\sqrt{n}(\overline{x} - \mu)}{s} =$ =

Conclusion: Accept or reject H_0

TABLE 2

t-distributions

t -

Distribution for small sample $n \le 30$

df = n-1		<>							
2-Tailed	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.005	
1-Tailed	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.0025	
Conf. Levl.	60%	70%	80%	90%	95%	98%	99%	99.5%	
1	1.376	1.963	3.078	6.314	12.706	31.821	63.656	127.321	
2	1.061	1.386	1.886	2.920	4.303	6.965	9.925	14.089	
3	0.978	1.250	1.638	2.353	3.182	4.541	5.841	7.453	
4	0.941	1.190	1.533	2.132	2.776	3.747	4.604	5.598	
5	0.920	1.156	1.476	2.015	2.571	3.365	4.032	4.773	
6	0.906	1.134	1.440	1.943	2.447	3.143	3.707	4.317	
7	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.029	
8	0.889	1.108	1.397	1.860	2.306	2.896	3.355	3.833	
9	0.883	1.100	1.383	1.833	2.262	2.821	3.250	3.690	
10	0.879	1.093	1.372	1.812	2.228	2.764	3.169	3.581	
11	0.876	1.088	1.363	1.796	2.201	2.718	3.106	3.497	
12	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.428	
13	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.372	
14	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.326	
15	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.286	
16	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.252	
17	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.222	
18	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.197	
19	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.174	
20	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.153	
21	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.135	
22	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.119	
23	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.104	
24	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.091	
25	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.078	
26	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.067	
27	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.057	
28	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.047	
29	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.038	
30	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.030	
n>30 ⇒ Z	0.842	1.036	1.282	1.645	1.96	2.326	2.576	2.807	
Z-T	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.005	
1-T Conf. Levl.	0.20 60%	0.15 70%	0.10 80%	0.05 90%	0.025 95%	0.01 98%	0.005 99%	0.0025 99.5%	

n > 30 Use Bottom row

for

Part 3 Topics Review

Last Update: 02/02/2020

Critical-value

n >30

Solution

Hypothesis Testing Procedure (Rejection Region Method)

Step 2: H_0 and H_1 . Decide if it is (left tailed test, right tailed test, or two tailed test). Step 1: SC and OC

<u>Step 3</u>: Find the critical value (**z** or **t** by using Table 2) and label the region as **R** for rejection or **A** for acceptance of H_0

Step 4: Test statistics =TS =
$$\frac{\sqrt{n(\overline{x} - \mu)}}{s}$$

Step 5: Conclusion: Is H_0 accepted or rejected? (H_0 will be rejected if TS falls in critical region otherwise accepted)

Step 6: Comment: Is SC accepted or rejected?

Step 7: Find P-value- by using your TI calculator.

Problem 1. At $\alpha = 0.05$, test the claim that average life of "Cyan" batteries exceeds 50 months. A sample of 64 batteries had a mean of 53 months with standard deviation of 9.5 months.

SC:
$$\mu > 50$$

Ho:
$$\mu \le 50$$

$$n = 64$$

$$\overline{x} = 53$$

$$s = 9.5$$

OC:
$$\mu$$
 ≤ 50

$$H_{1:} \mu > 50$$

(left tailed test, two tailed test, or right tailed test)

$$\frac{(53-50)}{(53-50)} = 2.526$$

 $\alpha = 0.05$ and n = 64 then CV = 1.645

TS=
$$\frac{\sqrt{n}(\overline{x} - \mu)}{s} = \frac{\sqrt{64}(53 - 50)}{9.5} = 2.526$$

Conclusion: Accept or reject H_0

Comment: Accept or reject SC

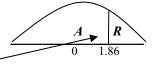
P-Value = $0.0058 < \alpha$

Problem 2. At $\alpha = 0.05$, test the claim that average life of "Cyan" batteries exceeds 50 months. A sample of 9 batteries had a mean of 53 months with standard deviation of 9.5 months.

SC:
$$\mu > 50$$

Ho:
$$\mu \le 50$$

$$n = 9$$


$$\overline{x} = 53$$

$$s = 9.5$$

OC:
$$\mu$$
 ≤ 50

$$H_{1:} \mu > 50$$

(left tailed test, two tailed test, or right tailed test)

$$\alpha = 0.05 \text{ and } n = 9 \text{ then } CV = 1.86$$

$$TS = \frac{\sqrt{n(\overline{x} - \mu)}}{s} = \frac{\sqrt{9(53 - 50)}}{9.5} = 0.947$$

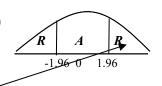
Conclusion: Accept or reject H_0

Comment: Accept or reject SC

P-Value = 0.1856 > α

Problem 3. At $\alpha = 0.05$, test the claim that average life of "Cyan" batteries is 50 months. A sample of 49 batteries had a mean of 54 months with standard deviation of 9.5 months.

SC:
$$\mu = 50$$


Ho:
$$\mu = 50$$

$$n = 49$$
 $\overline{x} = 54$

OC:
$$\mu$$
 ≠ 50

H_{1:}
$$\mu \neq 50$$

s = 9.5(left tailed test, two tailed test, or right tailed test)

$$\alpha = 0.05$$
 and $n = 49$ then $CV = \pm 1.96$

$$TS = \frac{\sqrt{n(\overline{x} - \mu)}}{s} = \frac{\sqrt{49(54 - 50)}}{9.5} = 2.947$$

Conclusion: Accept or reject H_0

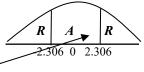
Comment: Accept or reject SC

P-Value $= 0.0032 < \alpha$

Problem 4. At $\alpha = 0.05$, test the claim that average life of "Cyan" batteries is different than 50 months. A sample of 9 batteries had a mean of 55 months with standard deviation of 9.5 months.

SC:
$$\mu \neq 50$$
 Ho: $\mu = 50$

$$n = 9$$
 $\overline{x} = 55$ $s = 9.5$


OC:
$$\mu = 50$$

$$H_{1:} \mu \neq 50$$

(left tailed test, two tailed test, or right tailed test)

$$\alpha = 0.05$$
 and $n = 9$ then $CV = \pm 2.306$

TS=
$$\frac{\sqrt{n(\overline{x} - \mu)}}{s} = \frac{\sqrt{9(55 - 50)}}{9.5} = 1.58$$

Conclusion: Accept or reject H_0

P-Value =
$$0.153 > \alpha$$

Problem 5. At $\alpha = 0.01$, test the claim that average life of "Cyan" batteries is at most 50 months. A sample of 49 batteries had a mean of 53 months with standard deviation of 8.8 months.

SC:
$$\mu$$
 ≤ 50

Ho:
$$\mu \le 50$$

$$n = 49$$

$$\overline{x} = 53$$
 $s = 8.8$

OC:
$$\mu > 50$$

$$H_{1:} \mu > 50$$

(left tailed test, two tailed test, or *right tailed test*)

TS=
$$\frac{\sqrt{n}(\overline{x} - \mu)}{s} = \frac{\sqrt{49}(53 - 50)}{88} = 2.386$$

 $\alpha = 0.01$ and n = 49 then CV = 2.326

$$TS = \frac{\sqrt{n(x-\mu)}}{s} = \frac{\sqrt{49(33-30)}}{8.8} = 2.386$$

P-Value = 0.0085 < α

Conclusion: Accept or reject H_0

Comment: Accept or reject SC

Problem 6. At $\alpha = 0.01$, test the claim that average life of "Cyan" batteries is at most 50 months. A sample of 16 batteries had a mean of 53 months with standard deviation of 9.4 months.

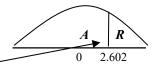
SC:
$$\mu$$
 ≤ 50

Ho:
$$\mu \le 50$$

$$n = 16$$

$$\overline{x} = 53$$

$$s = 9.4$$


OC: $\mu > 50$

$$H_{1:} \mu > 50$$

(left tailed test, two tailed test, or *right tailed test*)

$$\alpha = 0.01$$
 and $n = 16$ then $CV = 2.602$

TS=
$$\frac{\sqrt{n}(\overline{x} - \mu)}{s} = \frac{\sqrt{16}(53 - 50)}{9.4} = 1.277$$

Conclusion: Accept or reject H_0

Comment: Accept or reject SC

P-Value $= 0.1106 > \alpha$

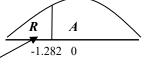
Problem 7. At $\alpha = 0.10$, test the claim that average life of "Cyan" batteries is at least 50 months. A sample of 36 batteries had a mean of 46 months with standard deviation of 10 months.

SC: μ ≥ 50

Ho:
$$\mu \ge 50$$

$$n = 36$$

$$\overline{x} = 46$$


OC: μ < 50

$$H_{1:} \mu < 50$$

(**left tailed test**, two tailed test, or *right tailed test*)

$$\alpha = 0.10$$
 and $n = 36$ then $CV = -1.282$

TS=
$$\frac{\sqrt{n(\overline{x} - \mu)}}{s} = \frac{\sqrt{36(46 - 50)}}{10} = -2.4$$

Conclusion: Accept or reject H_0

Comment: Accept or reject SC

P-Value $= 0.0082 < \alpha$

Problem 8: At $\alpha = 0.10$, test the claim that average life of "Cyan" batteries is at least 50 months. A sample of 16 batteries had a mean of 47 months with standard deviation of 10 months.

SC:
$$\mu \ge 50$$
 Ho: $\mu \ge 50$

$$n = 16$$
 $\overline{x} = 47$ $s = 10$

OC:
$$\mu$$
 < 50 $H_{1:}$ μ < 50

 μ < 50 (left tailed test, two tailed test, or right tailed test)

$$\alpha = 0.10$$
 and $n = 16$ then $CV = -1.341$

TS=
$$\frac{\sqrt{n(\overline{x} - \mu)}}{s} = \frac{\sqrt{16(47 - 50)}}{10} = -1.2$$

Conclusion: Accept or reject H_0

P-Value =
$$0.1243 > \alpha$$

Problem 9: At $\alpha = 0.025$, test the claim that average life of "Cyan" batteries is **less than** 50 months. A sample of 36 batteries had a mean of 46 months with standard deviation of 12 months.

SC:
$$\mu$$
 < 50

Ho:
$$\mu \ge 50$$

$$n = 36$$

$$\overline{x} = 46$$

$$s = 12$$

OC: μ ≥ 50

$$H_{1:} \mu < 50$$

(left tailed test, two tailed test, or right tailed test)

$$TS = \frac{\sqrt{n(\overline{x} - \mu)}}{\frac{s}{12}} = \frac{\sqrt{36(46 - 50)}}{12} = -2.0$$

 $\alpha = 0.025$ and n = 36 then CV = -1.96

Conclusion: Accept or reject H_0

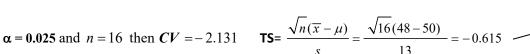
$$P$$
-Value = $0.0228 < \alpha$

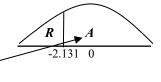
Problem 10: At $\alpha = 0.025$, test the claim that average life of "Cyan" batteries is **less than** 50 months. A sample of 16 batteries had a mean of 48 months with standard deviation of 13 months.

SC:
$$\mu < 50$$

Ho:
$$\mu \ge 50$$

$$n = 16$$


$$\overline{x} = 48$$


OC: μ ≥ 50

$$H_{1:} \mu < 50$$

(left tailed test, two tailed test, or right tailed test)

s = 13

Conclusion: Accept or reject H_0

Comment: Accept or reject SC

P-Value = $0.2738 > \alpha$