## Hypotheses about $P$

P. 1) DMV claims that more than $65 \%$ of applicants for driving tests pass the very first time. To test this claim if out of a sample of 250 applicants only 164 passed the driving test. Is DMV's claim valid? $\alpha=0.05$,
$S C$ :
Но:
$n=$
$x=$
$\hat{p}=\frac{}{250}=$
$O C$ :
$\mathrm{H}_{1}$ :

Test Statistic: $\qquad$


Conclusion: Accept or reject $\mathbf{H}_{\mathbf{0}}$ ?
Comment: Accept or reject SC?
P. 2) DMV claims that $65 \%$ of applicants for driving tests pass the very first time. To test this claim with $\alpha=0.01$, out of a sample of 400 applicants 280 passed the driving test. Is DMV's claim valid?
$S C$ :
Но:
$n=$
$x=$
$\hat{p}=\frac{}{400}=$
OC:
$\mathrm{H}_{1}$ :

Test Statistic: $\qquad$
Conclusion: Accept or reject $\mathbf{H}_{0}$ ?


Comment: Accept or reject SC?
P. 3) In a pre election sampling research 468 did vote for the republican candidate for governor and 532 did not. Is there sufficient evidence to suggest that the republican candidate will lose the election (getting less than $50 \%$ of the vote) at the .025 level?
$S C$ :
Но:
$n=$
$x=$

$$
\hat{p}=
$$

OC:
$\mathrm{H}_{1}$ :

Test Statistic $=\boldsymbol{t s}=$ $\qquad$
Conclusion: Accept or reject $\mathbf{H}_{\mathbf{0}}$ ?


0

## Answers to practice problems

P. 1)

SC: $P>0.65$
Ho: $P \leq 0.65 \quad n=\quad x=\quad \hat{p}=\frac{164}{250}=0.656$
OC: $P \leq 0.65$
$\mathrm{H}_{1}: P>0.65$
Test Statistic $=Z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}=\frac{.656-.65}{\sqrt{\frac{.65(1-.65)}{250}}}=\frac{.006}{.0302}=0.199$
Conclusion: Accept $\mathbf{H}_{\mathbf{0}}$ ?
Falls not inside CR

Comment: Reject SC?

$$
\text { P-value }=0.4211>\alpha
$$

## P. 2)

SC: $P=0.65$
Ho: $P=0.65$
$n=400$
$x=280$
$\hat{p}=\frac{280}{400}=0.7$
OC: $P \neq 0.65$
$\mathrm{H}_{1:} P \neq 0.65$
$\mathbf{C V}=z= \pm 2.575$
TS: $Z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}=\frac{0.70-.65}{\sqrt{\frac{.65(1-.65)}{400}}}=\frac{.05}{.0238}=2.10 \Rightarrow$ Falls not inside $\boldsymbol{C R}$


Conclusion: Accept Ho
Comment: DMV's claim is true
P-value $=\mathbf{0 . 0 3 6 0}>\alpha$
P. 3)

SC: $P<0.50$
Ho: $P \geq 0.50$
$n=1000 \quad x=468$
$\hat{p}=468 / 1000=0.468$
OC: $P \geq 0.50$
$\mathrm{H}_{1:} P<0.50$
$\mathbf{C V}=z=1.96$

TS: $Z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}=\frac{0.468-0.50}{\sqrt{\frac{.50(1-.50)}{1000}}}=\frac{-0.032}{.01581}=-2.02 \Rightarrow$ It falls inside $\boldsymbol{C R}$


Conclusion: Reject Ho Comment: Yes, the candidate will lose the election.

P-value $=0.0215<\alpha \quad>\alpha$

