Test of Hypothesis

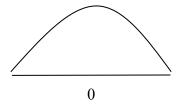
Paired Samples

Problem 1) A course is intended *to increase* the self-confidence of company's employees. A random sample of seven employees was evaluated for their self-confidence salesperson before and after this course.

The following table shows the measured of self-confidence scores before and after this course:

Before	8	5	4	9	6	9	5				
After	10	8	5	11	6	7	9				
								$\Sigma d =$	$\overline{d} =$	$S_d =$	
d=A - B										<i>u</i>	

Using the 5% significance level, can you conclude that attending this course increases the self-confidence of company's employees?


SC: After the course the

 H_0 :

OC.: After the course the

 H_1 :

 $\mathbf{CV} = t =$

Test Statistic = $t\mathbf{s} = t = \frac{\sqrt{n}(\overline{d} - \mu_d)}{S_d} =$

Conclusion: Accept or reject H₀?

Comment: Accept or reject SC?

Problem 2) A company claims that its 12-week special exercise program significantly reduces weight. A random sample of six persons was selected, and these persons were put on this exercise program for 12 weeks. The following table gives the weight (in pounds) of these six persons before and after the program.

Before	180	195	177	221	208	199				
After	183	187	161	204	197	189				
							$\Sigma d =$	$\overline{d} =$	$S_{d} =$	
d=A - B									а	

Using the 1% significance level, can you conclude that attending this exercise program reduces the weight of participants?

SC: After the course the

 H_0 :

OC: After the course the

 H_1 :

 $\mathbf{CV} = t =$

Test Statistic = t =

resi Simisiic – t –

Conclusion: Accept or reject H_0 ?

Comment: Accept or reject SC?

Section 15 Practice Problems 02/02/2020 1

Paired Samples

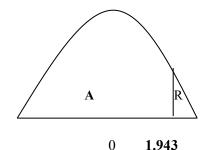
Problem 1)

Before	8	5	4	9	6	9	5			
After	10	8	5	11	6	7	9			
d=A - B	2	3	1	2	0	-2	4	$\Sigma d = 10$	$\bar{d} = 1.429$	$S_d = 1.988$

 μ_d = Average increase in self- confidence

SC: After the course the self-confidence of company's employees increases.

CC.: After the course the self-confidence of company's employees does not increase or remains the same.


SC: $\mu_d > 0$

Ho:
$$\mu_d \leq 0$$

$$H_1: \mu_d > 0$$

$$t = 1.943$$

$$TS = t = \frac{\sqrt{n}(\bar{d} - \mu_d)}{s_d} = \frac{\sqrt{7}(1.429 - 0)}{1.988} = 1.90 \implies Falls \text{ outside CR}$$

Conclusion: Accept Ho

Comment: After the course the self-confidence of company's employees does not increase or remains the same.

Problem 2)

Before	180	195	177	221	208	199			
After	183	187	161	204	197	189			
d=A - B	3	- 8	- 16	-17	- 11	- 10	$\Sigma d = -59$	$\bar{d} = -9.833$	$s_d = 7.19$

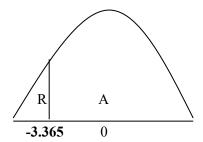
Average weight loss = μ_d

SC: This exercise program reduces the weight of participants?

OC: This exercise program does not reduce the weight of participants?

SC: $\mu_d < 0$

Ho:
$$\mu_d \ge 0$$


OC: $\mu_d \ge 0$

$$H_1: \mu_d < 0$$

CV (From Table 2) t = -3.365

$$t = -3.365$$

$$TS = t = \frac{\sqrt{n}(\overline{d} - \mu_d)}{s_d} = \frac{\sqrt{6}(-9.833 - 0)}{7.19} = -3.349 \implies Falls outside CR$$

Conclusion: Accept Ho Comment: This exercise program does not reduce the weight of participants?