1. A random sample of $\mathbf{3 6}$ life insurance policy holders showed that the average premiums paid on their life insurance policies was $\mathbf{\$ 3 4 0}$ per year with a standard deviation of $\mathbf{\$ 2 4}$. Construct a 95% confidence interval for the population mean. $n=36 \quad \bar{x}=340 \quad \sigma=$ or $s=24$
Because sample size is more than 30 , then we use___?

$$
\$ 332.16<\mu<\$ 347.84
$$

2. A random sample of $\mathbf{9}$ life insurance policy holders showed that the average premiums paid on their life insurance policies was $\mathbf{\$ 3 4 0}$ per year with a standard deviation of $\mathbf{\$ 2 4}$. Construct a 95% confidence interval for the population mean. $n=\quad \bar{x}=\quad \sigma=$ or $s=$
Because sample size is less than 30 , then we use ?

$$
\$ 321.55<\mu<\$ 358.45
$$

3. A random sample of $\mathbf{9}$ life insurance policy holders showed that the average premiums paid on their life insurance policies was $\$ 340$ per year and population standard deviation of $\$ 24$. Construct a 90% confidence interval for the population mean. $n=\quad \bar{x}=\quad \sigma=$ or $s=$ Because sample size is less than 30, then then we use \qquad ?

$$
\$ 325.12<\mu<\$ 354.88
$$

Also by comparing problems 2 and 3, explain by lowering the confidence level, what happened to error (becomes larger or smaller) and the confidence interval(becomes wider or narrower)?
4. A company that produces white bread is concerned about the distribution of the amount of sodium in its bread. The company takes a simple random sample of $\mathbf{1 6}$ slices of bread and computes the sample mean to be 100 milligrams of sodium per slice. Construct a 90% confidence interval for the unknown mean sodium level assuming that the sample standard deviation is 10 milligrams.
$n=\quad \bar{x}=\quad \sigma=\quad$ or $s=$
Because sample size is less than 30, then we use ____ ?

$$
95.62<\mu<104.38
$$

5. The football coach randomly selected eight players and timed how long it took to perform a certain drill. The times in minutes were: $12,9,13,7,8,13,16,10$. Assuming that the times follow a normal distribution, find a 90% confidence interval for the population mean. $n=\quad \bar{x}=\quad \sigma=$ or $s=$
Because sample size is \qquad then we use \qquad ?
6. Important properties about the relationship between sample size and confidence level and increasing and decreasing margin of error

$$
E=z \frac{s}{\sqrt{n}} .
$$

a) As the sample size (n) decreases, the margin of error (E) \qquad
b) As the confidence level (C) decreases, the margin of error (E) \qquad

Solutions

1. A random sample of 36 life insurance policy holders showed that the average premiums paid on their life insurance policies was $\$ 340$ per year with a standard deviation of $\$ 24$. Construct a 95% confidence interval for the population mean. $n=36 \quad \bar{x}=340 \quad s=24$
Because sample size is more than 30, we use normal distribution
$E=z(s / \sqrt{n})=1.96 \frac{24}{\sqrt{36}}=7.84 \quad \mu=340 \pm 7.84$
$\$ 332.16<\mu<\$ 347.84$
2. A random sample of $\mathbf{9}$ life insurance policy holders showed that the average premiums paid on their life insurance policies was $\$ 340$ per year with a standard deviation of $\$ 24$. Construct a 95% confidence interval for the population mean. $n=9 \quad \bar{x}=340 \quad s=24$
Because sample size is less than 30 , we use t distribution (the table) with degree of freedom of 8 and 95% confidence level and we get $t=2.306$

$$
E=t(s / \sqrt{n})=2.306 \frac{24}{\sqrt{9}}=18.45 \quad \mu=340 \pm 18.45 \quad \$ 321.55<\mu<\$ 358.45
$$

3. A random sample of $\mathbf{9}$ life insurance policy holders showed that the average premiums paid on their life insurance policies was $\$ 340$ per year and standard deviation of $\$ 24$. Construct a 90% confidence interval for the population mean. $n=9 \quad \bar{x}=340 \quad s=24 \quad$ Because sample size is less than 30, we use \boldsymbol{t} distribution (the table) with degree of freedom of $\mathbf{1 5}$ and $\mathbf{9 0 \%}$ confidence level and we get $t=1.86$

$$
E=t(s / \sqrt{n})=1.86 \frac{24}{\sqrt{9}}=14.88 \quad \mu=340 \pm 14.88 \quad \$ 325.12<\mu<\$ 354.88
$$

By lowering the confidence level error becomes smaller and the confidence interval becomes narrower
4. A company that produces white bread is concerned about the distribution of the amount of sodium in its bread. The company takes a simple random sample of $\mathbf{1 6}$ slices of bread and computes the sample mean to be $\mathbf{1 0 0}$ milligrams of sodium per slice. Construct a $\mathbf{9 0 \%}$ confidence interval for the unknown mean sodium level assuming that the sample standard deviation is $\mathbf{1 0}$ milligrams.
$n=16 \quad \bar{x}=100 \quad \sigma=$ or $s=10$
Because sample size is less than $\mathbf{3 0}$, we use t distribution (the table) with degree of freedom of 24 and 90% confidence level and we get $t=1.86$

$$
E=t(s / \sqrt{n})=1.753 \frac{10}{\sqrt{16}}=4.38 \quad \mu=100 \pm 4.38 \quad 95.62<\mu<104.38
$$

5. The football coach randomly selected eight players and timed how long it took to perform a certain drill. The times in minutes were: $12,9,13,7,8,13,16,10$. Assuming that the times follow a normal distribution, find a 90% confidence interval for the population mean. $n=8 \quad \bar{x}=11 \quad s=3.02$
Because sample size is less than 30 , we use t distribution (the table) with degree of freedom of 9 and 90% confidence level and we get $t=1.895$
$E=t(s / \sqrt{n})=1.895 \frac{3.02}{\sqrt{8}}=2.02 \quad \mu=11 \pm 2.02 \quad 8.98<\mu<13.02$
6. Important properties about the relationship between sample size and confidence level and increasing and decreasing margin of error

$$
E=z \frac{s}{\sqrt{n}} .
$$

c) As the sample size (n) decreases, the margin of error (E) increases
d) As the confidence level (C) decreases, the margin of error (E) decreases

Part 3
Last Update: 02/02/2020

