Two Populations: Point and Interval Estimation

Topics	Page
Learning Objectives	1
Formulas	1
Normal - Table	2
Two Populations: $\mu_{1}-\mu_{2}$	3
Two Populations : $P_{1}-P_{2}$	5

For all quizzes in part 3: Be sure you have formula sheet and Table 1.

Learning Objectives

To estimate difference between two population Means $\left(\mu_{1}-\mu_{2}\right)$, know how to use the formula $\mu_{1}-\mu_{2}=\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm \mathrm{E}$ and TI (option 9)
To estimate difference between two population proportions ($P_{1}-P_{2}$), know how to use the formula $P_{1}-P_{2}=\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm \mathrm{E}$ and TI (option B)

Important Note 1: As you study each page of topics Review, do all the problems listed at the bottom of the page from practice problem before going to the next page.

Quizzes for Part 3

Be sure you have formula sheet and Table 1 and Table 2.

Quiz \# 10: This quiz covers all materials on quiz 8, quiz 9 plus the content of the following pages.

Example:

1. Estimate the average difference in battery life between Diehard and Everlast brand? $\mu_{D}-\mu_{E}=$?
2. Estimate the percentage difference between female and male who pass stat class? $P_{f}-P_{m}=$?

Estimating the difference between Two Populations Means or Proportions	
Mean $\mu_{1}-\mu_{2}$	Proportion $P_{1}-P_{2}$
$\mu_{1}-\mu_{2}=\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm \mathrm{E}$	$P_{1}-P_{2}=\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm \mathrm{E}$
Point estimate $=\left(\bar{x}_{1}-\bar{x}_{2}\right)$	Point estimate $=\left(\hat{p}_{1}-\hat{p}_{2}\right)$
$\mathrm{E}=\boldsymbol{z}_{\alpha / 2} \sqrt{\frac{\boldsymbol{s}_{1}^{2}}{\boldsymbol{n}_{1}}+\frac{\boldsymbol{s}_{2}^{2}}{\boldsymbol{n}_{2}}}$	$\mathrm{E}=\boldsymbol{z}_{\alpha / 2} \sqrt{\frac{\hat{\boldsymbol{p}}_{\mathbf{1}}\left(1-\hat{\boldsymbol{p}}_{1}\right)}{\boldsymbol{n}_{1}}+\frac{\hat{\boldsymbol{p}}_{2}\left(1-\hat{\boldsymbol{p}}_{2}\right)}{\boldsymbol{n}_{2}}}$
TI-83/84 stat $\rightarrow \boldsymbol{t e s t} \rightarrow$ Option 9	TI-83/84 stat \rightarrow test $\rightarrow \boldsymbol{B}$

Based on Standard Normal Distribution $\mu=0$ and $\sigma=1$

How to find the Z -value for confidence intervals.
Example: Find the Z - value for $\mathbf{9 0 \%}$ confidence interval 1. Di vide $90 \%=0.90$ by $2, \Rightarrow .90 / 2=0.45$
2. Subtract 0.45 from $0.5 \Rightarrow .5-0.45=.05$
3. Look for area close to 0.05 from inside the table (page1).

4 Find its corresponding Z-value (-1.645)

TI-83/84 2nd \rightarrow Distr \rightarrow Option 3 input $(\%, 0,1)$
Example: 2nd \rightarrow Distr \rightarrow Option 3 input ($.05,0,1$) enter, then the answer will be -1.645
Example: 2nd \rightarrow Distr \rightarrow Option 3 input ($95,0,1$) enter, then the answer will be 1.645
Hint for TI \% is the area to the left of the cut off point. ${ }^{n>30}$
Section 1
Topics Review Last Update: 02/02/2022

Estimating Difference between Two Populations Means ($\mu_{1}-\mu_{2}$)

$\mu_{1}-\mu_{2}=\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm E \quad E=\mathrm{Z}_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$
(for z - value use table)
a) What is the point estimate for the difference between two population means $\mu_{1}-\mu_{2}$?
b) What is the error formula for the difference between two population means?
c) How to use TI to estimate for the difference between two population means?
d) What conclusion can we draw if the lower bound of the estimate happened to be zero or negative?
e) What conclusion can we draw if the both bounds of the estimate happened to be negative?

3 different ways the final answer may look like.

1) Both end signs positive $+<\mu_{1}-\mu_{2}<+\quad$ Indicating group 1 has higher average than group 2.
2) Different end signs $\quad-<\mu_{1}-\mu_{2}<+\quad$ Inconclusive as which group has higher average.
3) Both end signs negative $-<\mu_{1}-\mu_{2}<-\quad$ Indicating group 2 has higher average than group 1.
4) Use $\mathbf{9 9 \%}$ confidence level to estimate the difference in average life (in months) of "Diehard" and "Everlast" batteries

Diehard	Everlast
$n_{1}=44$	$n_{2}=36$
$\bar{x}_{1}=51.8$	$\bar{x}_{2}=47.4$
$s_{1}=2.5$	$s_{2}=3.7$

$$
\begin{array}{cl}
\mu_{1}-\mu_{2}=(51.8-47.4) \pm E & E=2.5758 \sqrt{\frac{2.5^{2}}{44}+\frac{3.7^{2}}{36}}=1.86 \\
\mu_{1}-\mu_{2}=4.4 \pm 1.86 & 2.54<\mu_{1}-\mu_{2}<6.26
\end{array}
$$

Conclusion: Both signs are positive indicating group 1 (Diehard) has higher average than group 2 (Everlast). By 99\% confidence, Diehard batteries on the average last between 2.54 to 6.26 months longer than Everlast.

2) Use $\mathbf{9 0 \%}$ confidence level to estimate the difference in average life (in months) of "Diehard" and "Everlast" batteries

	Diehard μ_{1}	Everlast μ_{2}
\mathbf{n}	$n_{1}=40$	$n_{2}=49$
\bar{x}	$\bar{x}_{1}=52$	$\bar{x}_{2}=50.5$
\mathbf{S}	$s_{1}=5.5$	$s_{2}=4.5$

$\mu_{1}-\mu_{2}=\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm E$
$E=\mathrm{Z}_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}$
$\mu_{1}-\mu_{2}=(?-?) \pm E$
$E=? \sqrt{\frac{?^{2}}{?}+\frac{?^{2}}{?}}=$?
$?<\mu_{1}-\mu_{2}<?$
Answer: $-0.279<\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}<3.279$
Conclusion: Because one side is negative then we can conclude that One brand does not have longer average life than the other.
3) Use 99% confidence level to estimate the difference in weights sugar between Regular Coke and Regular Pepsi.

	Regular Coke μ_{1}	Regular Pepsi μ_{2}
\mathbf{n}	$n_{1}=36$	$n_{2}=36$
\bar{x}	$\bar{x}_{1}=0.82410$	$\bar{x}_{2}=0.81682$
\mathbf{S}	$s_{1}=0.007507$	$s_{2}=0.005701$

$$
\mu_{1}-\mu_{2}=(?-?) \pm E
$$

$$
E=? \sqrt{\frac{?^{2}}{?}+\frac{?^{2}}{?}}=?
$$

$?<\mu_{1}-\mu_{2}<?$
Answer: $0.00324<\mu_{1}-\mu_{2}<0.01133$

Conclusion:

3) According to AMA, the average annual earnings of radiologists in the US are $\$ 250,000$ and those of surgeons are $\$ 240,000$. Suppose that these means are based on random samples of 400 radiologists and 500 surgeons and that the population st. dev. of the annual earnings of radiologists and surgeons are $\$ 30,000$ and $\$ 35$, 000 . Construct a 97% confidence interval for the difference between the annual mean earnings of radiologists and surgeons
$\mu_{R}-\mu_{S}=(?-?) \pm E$

$$
E=? \sqrt{\frac{?^{2}}{?}+\frac{?^{2}}{?}}=?
$$

$?<\mu_{R}-\mu_{S}<?$
Answer $5295.56<\mu_{R}-\mu_{S}<14704.44$

Estimating Difference between two Populations Proportions ($P_{1}-P_{2}$)

 $P_{1}-P_{2}=\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm E \quad E=\mathrm{z}_{\alpha / 2} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}} \quad$ (for z- value use table 1)a) What is the point estimate for the difference between two population proportions $P_{1}-P_{2}$?
b) What is the error formula for the difference between two population proportions?
c) How to use TI to estimate for the difference between two population proportions?
d) What conclusion can we draw if the lower bound of the estimate happened to be zero or negative?
e) What conclusion can we draw if the both bounds of the estimate happened to be negative?

3 different ways the final answer may look like.

1) Both end signs positive $+<P_{1}-P_{2}<+$ Indicating group 1 has higher percentage than group 2
2) Different end signs $-<P_{1}-P_{2}<+$ Inconclusive as which group has higher percentage.
3) Both end signs negative $-<P_{1}-P_{2}<-$ Indicating group 2 has higher percentage than group 1.

YouTube TI Calculator: https://www.youtube.com/watch?v=-YO0 3VqZ1g Difference of two Proportions

1) Use 95% confidence level to estimate the difference in percentage between Female and Male that are passing stat class.

	Female	Male
Number of students passed	$x_{1}=\mathbf{7 3}$	$x_{2}=\mathbf{8 7}$
Number of students took stat	$n_{1}=\mathbf{1 0 0}$	$n_{2}=\mathbf{1 5 0}$
	$\hat{p}_{1}=73 / 100=.73$	$\hat{p}_{2}=87 / 150=.58$

Point Estimate $=\hat{p}_{1}-\hat{p}_{2}=0.73-0.58=0.15$
$E=1.96 \sqrt{\frac{0.73(1-0.73)}{100}+\frac{0.58(1-0.58)}{150}}=0.118=11.8 \% P_{1}-P_{2}=0.15 \pm 0.118=15 \% \pm 11.8 \%$
Answer $3.2 \%<P_{1}-P_{2}<26.8 \%$
Conclusion: Both signs are positive indicating group 1 (female) has higher percentage in passing stat class than group 2(male).

Both signs are positive indicating group 1 (female) has higher percentage in passing stat class than group 2(male). $E=(U B-L B) / 2=(0.268-0.032) / 2=0.118$
2) Use $\mathbf{9 0 \%}$ confidence level to estimate the difference in percentage between Female and Male that are passing DMV test.

	Female	Male
Number of students passed	$x_{1}=\mathbf{3 0}$	$x_{2}=\mathbf{6 5}$
Number of students took driving test	$n_{1}=78$	$n_{2}=80$
	$\hat{p}_{1}=$	$\hat{p}_{2}=$

Answer $-54.4 \%<P_{1}-P_{2}<-31.2 \%$
$31.2 \%<P_{2}-P_{1}<54.4 \%$

Conclusion:

Comparing Success rate in passing DMV driving test between Female and Male Applicants

$-0.544<P_{1}-P_{2}<-0.312$

$3.123 \%<P_{2}-P_{1}<54.35 \%$

Both signs are negative indicating group 2 (male) has higher percentage in passing DMV test than group 1(female).

$$
\begin{gathered}
E=(U B-L B) / 2=(-0.3123-(-0.5435)) / 2=0.115 \\
E=(U B-L B) / 2=(0.5435-0.3123) / 2=0.115
\end{gathered}
$$

Conclusion:

3) 300 men and 400 women we asked how they felt about taxing Internet sales. 75 of the men and 60 of the women agreed with having a tax. Find a 90% confidence interval for the difference in proportions of men and women. (Write your answers in percentages with 2 decimal places)!

Answer:

$$
P_{m}-P_{w}=\left(\hat{p}_{m}-\hat{p}_{w}\right) \pm E=10 \% \pm 5.05 \% \quad 4.95 \%<P_{m}-P_{w}<15.05 \%
$$

