Two Populations: Point and Interval Estimation

Topics	Page
Learning Objectives	1
Formulas	1
Normal - Table	2
Two Populations: $\mu_1 - \mu_2$	3
Two Populations : $P_1 - P_2$	5

For all quizzes in part 3: Be sure you have formula sheet and Table 1.

Learning Objectives

To estimate **difference between two population Means** $(\mu_1 - \mu_2)$, know how to use the **formula** $\mu_1 - \mu_2 = (\overline{x_1} - \overline{x_2}) \pm E$ and TI (**option 9**) To estimate **difference between two population proportions** $(P_1 - P_2)$, know how to use the **formula** $P_1 - P_2 = (\hat{p}_1 - \hat{p}_2) \pm E$ and TI (**option B**)

Important Note 1: As you study each page of **topics Review**, do all the problems listed at the bottom of the page from practice problem before going to the next page.

Quizzes for Part 3

Be sure you have formula sheet and Table 1 and Table 2.

Quiz # 10: This quiz covers all materials on quiz 8, quiz 9 plus the content of the following pages.

Example:

- 1. Estimate the **average difference** in battery life between Diehard and Everlast brand? $\mu_D \mu_E = ?$
- 2. Estimate the **percentage difference** between female and male who pass stat class? $P_f P_m = ?$

Estimating the <i>difference</i> between Two Populations <i>Means</i> or <i>Proportions</i>		
Mean $\mu_1 - \mu_2$	Proportion $P_1 - P_2$	
$\mu_1 - \mu_2 = (\overline{x}_1 - \overline{x}_2) \pm E$	$P_1 - P_2 = (\hat{p}_1 - \hat{p}_2) \pm E$	
Point estimate $=(\overline{x}_1 - \overline{x}_2)$	Point estimate $= (\hat{p}_1 - \hat{p}_2)$	
$E = z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$E = z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$	
TI-83/84 stat \rightarrow test \rightarrow Option 9	$TI-83/84 stat \rightarrow test \rightarrow B$	

Out Side Area	Confidence Level	Out Side Area On left or right Cut-off Point	Z - Value (\pm) Critical Value = $Z_{\alpha/2}$
	99%	.005	± 2.5758
. Top 1 %	98%	.01	±2.3263
	97%	.015	±2.1701
	96%	.02	±2.0537
0 2.33	95%	.025	±1.9600
	94%	.03	±1.8808
OR	92%	.04	±1.7507
Out Side Area	90%	.05 🦯	±1.6450
Out Side Area	88%	.06	±1.5548
Bottom 1 %	86%	.07	±1.4758
	84%	.08	±1.4051
	82% /	.09	±1.3408
	80%	.10	±1.2816
.01	7⁄8%	.11	±1.2265
-2.33 0	76%	.12	±1.1750
	70%	.15	±1.0364
	60%	.20	±0.8416
	50%	.25	±0.6749
	40%	.30	±0.5244
How to find the Z -value for confidence intervals.			
Example: Find the Z - value for 90% confidence interval1. Divide $90\% = 0.90$ by $2, \Rightarrow .90/2 = 0.45$ 2. Subtract 0.45 from $0.5 \Rightarrow .5 - 0.45 = .05$ 3. Look for area close to 0.05 from inside the table (page1).4 Find its corresponding Z-value (- 1.645)- 1.6450			
TI-83/84 $2nd \rightarrow Distr \rightarrow Option 3$ input (%,0,1) Example: $2nd \rightarrow Distr \rightarrow Option 3$ input (.05,0,1) enter, then the answer will be - 1.645 Example: $2nd \rightarrow Distr \rightarrow Option 3$ input (.95,0,1) enter, then the answer will be 1.645 Hint for TL %/is the area to the left of the cut off point $n \ge 30$			

Hint for TI % is the area to the left of the cut off point. n > 30

Section 10 Topics Review Last Update: 02/02/2022

Estimating Difference between Two Populations Means $(\mu_1 - \mu_2)$

$$\mu_{1} - \mu_{2} = (\overline{x}_{1} - \overline{x}_{2}) \pm E \qquad \qquad E = \mathbf{Z}_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}$$

(for z- value use table)

- a) What is the point estimate for the **difference** between two population means $\mu_1 \mu_2$?
- b) What is the error formula for the difference between two population means?
- c) How to use TI to estimate for the difference between two population means?
- d) What conclusion can we draw if the lower bound of the estimate happened to be zero or negative?
- e) What conclusion can we draw if the both bounds of the estimate happened to be negative?

3 different ways the final answer may look like.

- 1) Both end signs **positive** $+ < \mu_1 \mu_2 < +$ Indicating **group 1** has higher average than **group 2**.
- 2) **Different** end signs $- < \mu_1 - \mu_2 < +$ Inconclusive as which group has higher average.
- 3) Both end signs **negative** $< \mu_1 \mu_2 < -$ Indicating **group 2** has higher average than **group 1**.
- 1) Use **99%** confidence level to estimate the difference in average life (in months) of "Diehard" and "Everlast" batteries

Diehard	Everlast
<i>n</i> ₁ =44	$n_2 = 36$
$\overline{x_1} = 51.8$	$\overline{x}_2 = 47.4$
$s_1 = 2.5$	<i>s</i> ₂ = 3 .7
$\mu_1 - \mu_2 = (51.8 - 47.4) \pm E$	$E = 2.5758\sqrt{\frac{2.5^2}{44} + \frac{3.7^2}{36}} = 1.86$

$$\mu_1 - \mu_2 = 4.4 \pm 1.86$$

$$E = 2.5758 \sqrt{\frac{-\mu_0}{44}} + \frac{2.54}{36} = 1$$

2.54 < $\mu_1 - \mu_2 < 6.26$

Conclusion: Both signs are positive indicating group 1 (Diehard) has higher average than group 2 (Everlast). By 99% confidence, Diehard batteries on the average last between 2.54 to 6.26 months longer than Everlast.

2) Use **90%** confidence level to estimate the difference in average life (in months) of "Diehard" and "Everlast" batteries

	Diehard μ_1	Everlast μ_2
n	$n_1 = 40$	<i>n</i> ₂ = 49
\overline{x}	$\overline{x}_1 = 52$	$\overline{x}_2 = 50.5$
S	<i>s</i> ₁ = 5 . 5	<i>s</i> ₂ = 4.5

$$\mu_{1} - \mu_{2} = (\overline{x_{1}} - \overline{x_{2}}) \pm E \qquad \qquad E = \mathbf{Z}_{\alpha/2} \sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} \\ \mu_{1} - \mu_{2} = (?-?) \pm E \qquad \qquad E = ?\sqrt{\frac{?^{2}}{?} + \frac{?^{2}}{?}} = ?$$

 $? < \mu_1 - \mu_2 < ?$

Answer: $-0.279 < \mu_1 - \mu_2 < 3.279$

Conclusion: Because **one side is negative** then we can conclude **that** One brand **does not** have longer average life than the other.

3) Use 99% confidence level to estimate the difference in weights sugar between Regular Coke and Regular Pepsi.

-		Regular Coke μ_1	Regular Pepsi $~\mu_{2}$
	n	$n_{1} = 36$	$n_{2} = 36$
	\overline{x}	$\overline{x_1} = 0.82410$	$\overline{x}_2 = 0.81682$
	S	$s_1 = 0.007507$	s ₂ =0.005701
$\mu_1 - \mu_1$	$\mu_1 - \mu_2 = (?-?) \pm E$ $E = ?\sqrt{\frac{?^2}{?} + \frac{?^2}{?}} = ?$		- ?

 $? < \mu_1 - \mu_2 < ?$

Answer: $0.00324 < \mu_1 - \mu_2 < 0.01133$

Conclusion:

3) According to AMA, the average annual earnings of radiologists in the US are \$250,000 and those of surgeons are \$240,000. Suppose that these means are based on random samples of 400 radiologists and 500 surgeons and that the population st. dev. of the annual earnings of radiologists and surgeons are \$30,000 and \$35, 000. Construct a 97 % confidence interval for the difference between the annual mean earnings of radiologists and surgeons

$$\mu_R - \mu_S = (?-?) \pm E$$
 $E = ?\sqrt{\frac{?^2}{?} + \frac{?^2}{?}} = ?$

 $? < \mu_{R} - \mu_{S} < ?$

Answer $5295.56 < \mu_R - \mu_S < 14704.44$

Estimating <u>Difference</u> between <u>two</u> Populations <u>Proportions</u> $(P_1 - P_2)$

$$P_1 - P_2 = (\hat{p}_1 - \hat{p}_2) \pm E \qquad E = \mathbf{Z}_{\alpha/2} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \qquad \text{(for z- value use table 1)}$$

- a) What is the point estimate for the **difference** between two population **proportions** $P_1 P_2$?
- **b)** What is the error formula for the **difference** between two population **proportions**?
- c) How to use TI to estimate for the difference between two population proportions?
- d) What conclusion can we draw if the lower bound of the estimate happened to be zero or negative?
- e) What conclusion can we draw if the both bounds of the estimate happened to be negative?

3 different ways the final answer may look like.

- 1) Both end signs **positive** $+ < P_1 P_2 < +$ Indicating **group 1** has higher percentage than **group 2**
- 2) **Different** end signs $< P_1 P_2 < +$ Inconclusive as which group has higher percentage.
- 3) Both end signs **negative** $< P_1 P_2 < -$ Indicating **group 2** has higher percentage than **group 1**.

YouTube TI Calculator: <u>https://www.youtube.com/watch?v=-YO0_3VqZ1g</u> Difference of two Proportions

 Use 95% confidence level to estimate the difference in percentage between Female and Male that are passing stat class.

	Female	Male
Number of students passed	<i>x</i> ₁ = 73	<i>x</i> ₂ = 87
Number of students took stat	<i>n</i> ₁ = 100	<i>n</i> ₂ = 150
	$\hat{p}_1 = 73 / 100 = .73$	$\hat{p}_2 = 87/150 = .58$

Point Estimate = $\hat{p}_1 - \hat{p}_2 = 0.73 - 0.58 = 0.15$

$$E = 1.96 \sqrt{\frac{0.73(1 - 0.73)}{100} + \frac{0.58(1 - 0.58)}{150}} = 0.118 = 11.8\% P_1 - P_2 = 0.15 \pm 0.118 = 15\% \pm 11.8\%$$

Answer $3.2\% < P_1 - P_2 < 26.8\%$

Conclusion: Both **signs are positive** indicating **group** 1 (**female**) has higher percentage in passing stat class than **group** 2(**male**).

2) Use 90% confidence level to estimate the difference in percentage between Female and Male that are passing DMV test.

	Female	Male
Number of students passed	<i>x</i> ₁ = 30	<i>x</i> ₂ = 65
Number of students took driving test	$n_1 = 78$	n ₂ = 80
	$\hat{p}_1 =$	$\hat{p}_2 =$

Answer
$$-54.4\% < P_1 - P_2 < -31.2\%$$

 $31.2\% < P_2 - P_1 < 54.4\%$

Conclusion:

Comparing Success rate in passing DMV driving test between Female and Male Applicants

 $-0.544 < P_1 - P_2 < -0.312$ $3.123\% < P_2 - P_1 < 54.35\%$

Both signs are negative indicating group 2 (male) has higher percentage in passing DMV test than group 1(female).

$$E = (UB - LB) / 2 = (-0.3123 - (-0.5435)) / 2 = 0.115$$
$$E = (UB - LB) / 2 = (0.5435 - 0.3123) / 2 = 0.115$$

Conclusion:

3) 300 men and 400 women we asked how they felt about taxing Internet sales. 75 of the men and 60 of the women agreed with having a tax. Find a 90% confidence interval for the difference in proportions of men and women. (Write your answers in percentages with 2 decimal places)!

Answer:

$$P_m - P_w = (\hat{p}_m - \hat{p}_w) \pm E = 10\% \pm 5.05\% \qquad 4.95\% < P_m - P_w < 15.05\%$$