Abe Mirza

Hypothesis Testing

7 – Step Process

- 1. Starting Claim, Opposite Claim
- 2. Standard Set –up, H₀, H₁
- 3. Establishing Guideline
- 4. Collecting Sample (Test Statistics)
- 5. Drawing Conclusion
- 6. Comment
- 7. P-value

Topics	Page
Learning Objectives	2
General Outline	3
Formuls	5
Large Sample Size (about Mean)	5
Small Sample Size (about Mean)	6

Learning Objectives

What do we hypothesize? **Population Parameter** such as **Mean** ($\mu = ?$) or **Proportion** (P = ?) Why do we hypothesize? To investigate any claim about **Population Parameter** Is **average** weight of cereal boxes 24 oz? Do **average** life of Die hard batteries exceed 60 months? Is less than **10%** of drivers text while driving? Will more than **45%** of people vote in the next election?

7-Step Process (overview)

Very very important:

From topics review you <u>must</u> read and practice one **step at a time**. Read the first step from topics review and then go to pages 3 through 6 and see how that step is done and then continue doing that for all the 7 steps

Step 1: Finding what the starting claim is. Is that about the **average** (μ) or proportopn(P); Write the starting claim as **SC** and try to oppose it as **OC** in statistical notation

Step 2: Rewriting **SC** and **OC** as H_0 and H_1

 H_0 (**must** have one of the = or \leq or \geq sign) and H_1 (**must** have one of the \neq or < or > sign). Draw the appropriate graph as *Left tail*, *two tails* or *right tail*.

Step 3: Finding critical value or values by using the t- table,. Critical value depends on three factors a) significance level (α)

b) being one-tailed or two-tailed.

c) sample size (Hint: if n > 30 use the bottom of the table otherwise use the top.)

Step 4: (called **Test Statistics**) is using the evidence from our sample and converting that to **Z** or t score that can be done by formula or Ti

Step 5: (called conclusion) is about **step 2** to see if to accept or reject H_0 .

Step 6: (called comment) is about step 1 to see if to accept or reject SC (Starting Claim).

Step 7: (**p-value**) to read the **p-value** from **TI** screen on step 4 and to find out if it is smaller or larger that significance level (α).

7-Steps of hypothesis testing (Detailed Outline)

1) From the problem write (SC: Starting Claim) and then write its (OC: Opposing Claim) in statistical notation.

		SC	OC	
Examples:	Average life of "Diehard" batteries exceeds 60 months	$\mu > 60$	$\mu \leq 60$	
	Average time to do a certain task is less than 25 minutes	μ < 25	$\mu \ge 25$	
	Average net weight of a certain cereal is 24 oz.	$\mu = 24$	$\mu \neq 24$	

2) The next step is rewriting SC, and OC in a new set up called H₀ (Null Hypothesis), and H₁ (Alternative Hypothesis): As how to change SC, and OC to H₀, and H₁, you need to follow the next rule remembering that H₀ (Null Hypothesis) must contain some form of equality, and H₁ (Alternative Hypothesis) must contain no form of equality. The mathematical setup is explained right below,

H ₀ (Null Hypothesis): (contains equal sign)	=	or	\geq	or	\leq
H ₁ (Alternative Hypothesis): (contains not equal sign)	≠	or	<	or	>

There are **three-possibilities** for setting up the hypothesis (a left-tailed test, two-tailed, right-tailed).

- **Hint**: if H_1 : μ < it is a left-tailed test
 - if H_1 : $\mu \neq$ it is a two-tailed test
 - if H_1 : μ > it is a right-tailed test

Label the region, as A (Accepting H_0), or R (Rejecting H_0) Rejections or acceptances labels are based on H_0 .

three -possibilities	H ₀ : $\mu \ge 60$	$\mathbf{H}_{0}: \ \mu = 60$	$H_0: \mu \leq 60$
	H ₁ : $\mu < 60$	$\mathbf{H}_1: \ \mu \neq 60$	$\mathbf{H}_1: \mu > 60$
left-tailed (LTT)			
two-tailed, (TTT)	(LTT) A	(TTT) A (TTT)	A (RTT) R
right-tailed (RTT)	$\frac{7 \text{ R}}{60}$	$\frac{ \mathbf{R} }{60}$	60

3) What is Critical value(s) and how to find it?
 Critical value(s) is limit(s) or boundary(ies) that if it is exceeded (by our sample data) then H₀ will be rejected.

How to find it? By looking up t- table, when we know the followings;

a) Significance level = α (Alpha Level) = Critical Region = Critical area = type I error In other words the determining the probability of rejectioing H₀, when H₀ is true. It is like finding some one to be quilty when he is innocent. So not that to let that happen we choose significance level or α value to be small between 1% to 10%. Hint: If significance level = α is not given assume α = .05 = 5% Critical Region is also the area designated by Significance level and is shown by α or R Also remember if our sample size is 30 or less, then on Table 2 use df = degree of freedom = n-1

b) One-tailed or two-tailed, and

For <u>sample sizes</u> n > 30 then use last row of Table 2 to find the critical value(s)..

4. Compute **Test Statistics** (based on sample information) from the following formulas.

a.
$$z = \frac{\sqrt{n}(\overline{x} - \mu)}{s}$$
 To test the Mean (μ) for large sample sizes
TI-83/84 stat \rightarrow test \rightarrow Option 1
b. $t = \frac{\sqrt{n}(\overline{x} - \mu)}{s}$ To test the Mean (μ) for $n \le 30$ and, when σ is unknown
TI-83/84 stat \rightarrow test \rightarrow Option 2

`5) Conclusion: The decision is made by comparing Test Statistics with Critical value, and find where the test statistics falls (inside the CR: Critical Region or not);

If Test Statistics falls inside the CR: Critical Region the decision is to Reject H_0 or saying that there is sufficient evidence to Reject H_0 . If it falls outside the CR: Critical Region the decision is to Fail to Reject H_0 or Accept H_0 that there is not sufficient evidence to Reject H_0 . When the result of a hypothesis test are determined to be significant then we reject the null hypotheses.

6) Comment: Decision as to accept or reject SC(the stated claim)? Two possibilities:

- 1) If **SC** and H_0 are the same then any decision you make for H_0 will be the same for **SC** and you write that as your comment.
- 2) If **SC** and H_0 are different then whatever decision you make for H_0 , you should make the opposite decision of that for **SC** and you write that as your comment.

7) **P-value:** It is the **area corresponding to the test statistics** and is always shown on the display of **TI-8 3/84** as P = (when you compute the test statistics). Basically it is the minimum α - value that is needed to reject the Null hypothesis **H**₀. As a rule you reject reject the Null hypothesis when **P-value** is smaller than α - value

Type I and Tpe II errors

Remember that we do not know for certain that if H_0 is true or false but after the test is set up, data collected, then we either Accept H_0 : or Reject H_0 :

The table below summarizes all possible scenarios that might happen when testing procedure is completed.

	H ₀ : True	H ₀ : False
Accept H ₀ :	Correct Decision	Type II error or called Beta(β)
Reject H ₀ :	Type <i>I</i> error or called Alpha (α)	Correct Decision = Power of a test $1 - \beta$

Large Samples about Mean

Example 2. Average life of "Die Long" batteries is less than 60 months. A sample of 64 batteries had an average life of 58 months and st. dev. of 10 months. Let $\alpha = 0.10$

P-value: 0.0548 less than $\alpha = 0.10$ reject Ho (remember when p-value is less than α , we reject Ho) P-value can be found by TI calculator

Section 12

Lecture note 12

10/10/20

Example 3. Average life of "Die Long" batteries is different than 60 months. A sample of 64 batteries had an average life of 62 months and st. dev. of 10 months. Let $\alpha = .05$

Conclusion: Accept or reject H₀? Outside CR then Fail to Reject H_0 or Accept H_0

Comment: Accept or reject SC? Reject that the average life of batteries is different than 60 months

P-value: 0.1096 more than $\alpha = 0.05$ accept Ho (remember when p-value is larger than α , we accept Ho)

<u>Small Samples about Mean</u> $n \leq 30$

Section 12

Example 5. Average life of "Die Long" batteries is less than 60 months. A sample of 9 batteries had an average life of 54 months and st. dev. of 10 months. Let $\alpha = .10$

Conclusion: Accept or reject H_0 ? Inside *CR* then reject H_0 ? Comment: Accept or reject SC? Accept that the average life of "Die Easy" batteries is less than 60 months **P-value:** 0.05478 less than $\alpha = 0.10$ reject Ho

Example 6. Average life of "Die Long" batteries is different than 60 months. A sample of 16 batteries had an average life of 66 months and st. dev. of 10 months. Let $\alpha = .02$

n = 16SC: $\mu \neq 60$ **H**₀: $\mu = 60$ **Hint**: Use **H**₁ to determine if it is LTT, TTT or RTT test $\alpha = 0.02$ **OC**: $\mu = 60$ $\mathbf{H}_1: \ \mu \neq 60$ Note: μ in H₁ is not equal, then it is a TTT When $\alpha = .02$, n < 30 and two –tailed test then by using 15th row of Table 2. Critical value = $C V = \mathbf{t} = \pm 2.602$ R R Α 0 2.602 $\frac{2.602}{2.602}$ Test Statistics = $t = \frac{\sqrt{n}(\overline{x} - \mu)}{s} = \frac{\sqrt{16}(66 - 60)}{10} = 2.4$ Falls Outside CR

p-value(area from test statistics)

Conclusion: Accept or reject H_0 ? **Outside** CR then Fail to Reject H_0 or Accept H_0 **Comment:** Accept or reject SC? Reject that the average life of "Die Easy" batteries is different than 60 months.

P-value: 0.0298 more than $\alpha = 0.02$ accept Ho

Section 12

Lecture note 12

Example 7) Leno Co. claims that the mean life of their batteries is 60 months. Test this claim with $\alpha = 0.02$ if a sample of 6 batteries has a life of 62, 58, 59, 64, 63, 61, months.

Conclusion: Accept or reject H₀? Outside CR then Fail to Reject H₀ or Accept H₀

Comment: Accept or reject **SC**? Fail to Reject or Accept that the average life of "Die Easy" batteries exceeds 60 months

P-value: 0.0272 more than $\alpha = 0.02$ accept Ho