Examples: Less than $\mathbf{1 3} \%$ of drivers text while driving.
At least 55\% of college students have Facebook account.
At most $\mathbf{2 1 \%}$ of tablets in the market are made by Samsung .

SC	OC
$\mathbf{P}<\mathbf{0 . 1 3}$	$\mathbf{P} \geq 0.13$
$\mathbf{P} \geq 0.55$	$\mathbf{P}<0.55$
$\mathbf{P} \leq 0.21$	$P>0.21$

Test Statistics: $\quad Z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}$
To test population proportion (P)

Proportion

Problem 1.

At $\boldsymbol{\alpha}=. \mathbf{0 5}$ test that $\mathbf{8 5 \%}$ of stat students pass the course. Out of 200 students only 156 students passed the course.

Test Statistics $=z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}=z=\frac{.78-.85}{\sqrt{\frac{.85(1-.85)}{200}}}=\frac{-.07}{0.02525}=-2.77 \quad$ Falls inside $\boldsymbol{C R}$
Conclusion: Accept or reject \mathbf{H}_{0} ? Inside $\boldsymbol{C R}$ then reject $\mathbf{H o}$
Comment: Accept or reject SC? Reject that $\mathbf{8 5 \%}$ of stat students pass the course.
P-value: $\mathbf{0} \mathbf{0 0 5 5 6 4}$ less than $\boldsymbol{\alpha}=\mathbf{0 . 0 5}$ reject $\mathbf{H o}$

Problem 2. At $\boldsymbol{\alpha}=\mathbf{. 1 0}$ test that more than $\mathbf{8 5 \%}$ of stat students pass the course. Out of 200 students only 172 students passed the course.
SC: $\mathbf{P}>0.85$
$\mathbf{H}_{\mathbf{0}}: \mathbf{P} \leq 0.85$
OC: $\mathbf{P} \leq 0.85$
$\mathbf{H}_{1}: \mathbf{P}>0.85$
Hint: Use $\mathbf{H}_{\mathbf{1}}$ to determine if it is LTT, TTT or RTT test
Note: P in $\mathbf{H}_{\mathbf{1}}$ is more than, then it is a RTT

When $\boldsymbol{\alpha}=\mathbf{. 1 0}, \mathrm{n}>30$ and one -tailed test then by using bottom row of page Table 2.
Critical value $=C V=\mathbf{Z}=\mathbf{1 . 2 8 2}$
Sample proportion $=\hat{p}=172 / 200=.86$
Test Statistics $=z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}=z=\frac{.86-.85}{\sqrt{\frac{.85(1-.85)}{200}}}=\frac{0.01}{0.02525}=0.3960 \quad$ Fall outside $\boldsymbol{C R}$
Conclusion: Accept or reject $\mathbf{H}_{\mathbf{0}}$? Outside CR then Fail to Reject $\mathbf{H}_{\mathbf{0}}$ or Accept $\mathbf{H}_{\mathbf{0}}$
Comment: Accept or reject SC? Reject that more than $\mathbf{8 5 \%}$ of stat students pass the course.

$$
\text { P-value: } \mathbf{0 . 3 9 6 0}>\boldsymbol{\alpha}=\mathbf{0 . 1 0} \text { accept Ho }
$$

Problem 3. Prior to election day, an opinion poll among registered voters indicate that 433 voters will vote for incumbent President and 367 will not., Can it be claimed at $\alpha=0.01$ that incumbent President will win the majoarity of the votes(getting above 50% of the vote)?
$\begin{array}{llll}\text { SC: } \mathbf{P}>0.50 & \mathbf{H}_{0}: \mathbf{P} \leq 0.50 & \text { Hint: Use } \mathbf{H}_{1} \text { to determine if it is LTT ,TTT or RTT test } \quad \mathrm{CV}=\mathbf{Z}=\mathbf{2 . 3 2} \\ \text { OC: } \mathbf{P} \leq 0.50 & \mathbf{H}_{1}: \mathbf{P}>0.50 & \text { Note: } P \text { in } \mathbf{H}_{\mathbf{1}} \text { is more than, then it is a RTT }\end{array}$
$\begin{array}{llll}\text { SC: } \mathbf{P}>0.50 & \mathbf{H}_{\mathbf{0}}: \mathbf{P} \leq 0.50 & \text { Hint: Use } \mathbf{H}_{1} \text { to determine if it is LTT ,TTT or RTT test } \quad \mathrm{CV}=\mathbf{Z}=\mathbf{2 . 3 2} \\ \text { OC: } \mathbf{P} \leq 0.50 & \mathbf{H}_{\mathbf{1}}: \mathbf{P}>0.50 & \text { Note: } P \text { in } \mathbf{H}_{\mathbf{1}} \text { is more than, then it is a RTT }\end{array}$
$\begin{array}{llll}\text { SC: } \mathbf{P}>0.50 & \mathbf{H}_{0}: \mathbf{P} \leq 0.50 & \text { Hint: Use } \mathbf{H}_{1} \text { to determine if it is LTT ,TTT or RTT test } \quad \mathrm{CV}=\mathbf{Z}=\mathbf{2 . 3 2} \\ \text { OC: } \mathbf{P} \leq 0.50 & \mathbf{H}_{1}: \mathbf{P}>0.50 & \text { Note: } P \text { in } \mathbf{H}_{\mathbf{1}} \text { is more than, then it is a RTT }\end{array}$
$\begin{array}{llll}\text { SC: } \mathbf{P}>0.50 & \mathbf{H}_{0}: \mathbf{P} \leq 0.50 & \text { Hint: Use } \mathbf{H}_{1} \text { to determine if it is LTT ,TTT or RTT test } \quad \mathrm{CV}=\mathbf{Z}=\mathbf{2 . 3 2} \\ \text { OC: } \mathbf{P} \leq 0.50 & \mathbf{H}_{1}: \mathbf{P}>0.50 & \text { Note: } P \text { in } \mathbf{H}_{\mathbf{1}} \text { is more than, then it is a } \mathbf{R T T}\end{array}$
$\begin{array}{llll}\text { SC: } \mathbf{P}>0.50 & \mathbf{H}_{0}: \mathbf{P} \leq 0.50 & \text { Hint: Use } \mathbf{H}_{1} \text { to determine if it is LTT ,TTT or RTT test } \quad \mathrm{CV}=\mathbf{Z}=\mathbf{2 . 3 2} \\ \text { OC: } \mathbf{P} \leq 0.50 & \mathbf{H}_{1}: \mathbf{P}>0.50 & \text { Note: } P \text { in } \mathbf{H}_{\mathbf{1}} \text { is more than, then it is a RTT }\end{array}$
$\begin{array}{llll}\text { SC: } \mathbf{P}>0.50 & \mathbf{H}_{0}: \mathbf{P} \leq 0.50 & \text { Hint: Use } \mathbf{H}_{1} \text { to determine if it is LTT ,TTT or RTT test } \quad \mathrm{CV}=\mathbf{Z}=\mathbf{2 . 3 2} \\ \text { OC: } \mathbf{P} \leq 0.50 & \mathbf{H}_{1}: \mathbf{P}>0.50 & \text { Note: } P \text { in } \mathbf{H}_{\mathbf{1}} \text { is more than, then it is a RTT }\end{array}$
When $\boldsymbol{\alpha}=\mathbf{0 . 0 1}, \mathrm{n}>30$ and one -tailed test then by using bottom row of Table $\mathbf{2}$.

Sample proportion $=\hat{p}=433 / 800=.54125$

Conclusion: Accept or reject \mathbf{H}_{0} ? Test Statistics is too close to Critical value, so decision is inconclusive
Comment: Accept or reject SC? Inconclusive as who the winner will be.
P-value: 0.098 almost the same as $\boldsymbol{\alpha}=0.001$ Inconclusive.

Section 13
Topics Review
02/02/2020

