Hypothesis Testing Proportion

Statistics

		SC	OC
Examples:	Less than 13% of drivers text while driving.	P < 0.13	P ≥ 0.13
	At least 55% of college students have Facebook account.	P ≥0.55	P < 0.55
	At most 21% of tablets in the market are made by Samsung	P ≤0.21	P > 0.21

Test Statistics: $Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{r}}}$

To test population proportion (**P**)

Proportion

Problem 1.

At $\alpha = .05$ test that 85% of stat students pass the course. Out of 200 students only 156 students passed the course.

Conclusion: Accept or reject H₀? Inside CR then reject H₀

Comment: Accept or reject SC? Reject that 85% of stat students pass the course.

P-value: 0.005564 less than $\alpha = 0.05$ reject Ho

Problem 2. At $\alpha = .10$ test that more than 85% of stat students pass the course. Out of 200 students only 172 students passed the course.

SC: P > 0.85 $H_0: P \le 0.85$ Hint: Use H₁ to determine if it is LTT, TTT or RTT test **OC**: **P** \leq 0.85 $H_1: P > 0.85$ Note: P in H₁ is more than, then it is a RTT

When $\alpha = .10$, n > 30 and one -tailed test then by using bottom row of page Table 2. **Critical value** = CV = **Z** = **1.282**

Conclusion: Accept or reject H_0 ? Outside CR then Fail to Reject H_0 or Accept H_0

Comment: Accept or reject **SC**? Reject that **more than 85%** of stat students pass the course.

P-value: $0.3960 > \alpha = 0.10$ accept Ho

Problem 3. Prior to election day, an opinion poll among registered voters indicate that 433 voters will vote for incumbent President and 367 will not., Can it be claimed at $\alpha = 0.01$ that incumbent President will win the majoarity of the votes(getting above 50% of the vote)?

SC: **P** > 0.50 $H_0: P \le 0.50$ Hint: Use H₁ to determine if it is LTT, TTT or RTT test CV = Z = 2.32 $H_1: P > 0.50$ **OC**: **P** \leq 0.50 Note: P in H₁ is more than, then it is a RTT

When $\alpha = 0.01$, n > 30 and one –tailed test then by using bottom row of Table 2.

Α

Sample proportion =
$$p = 433/800 = .54125$$

Fest Statistics =
$$z = \frac{\hat{p} - p}{\sqrt{\frac{p(1 - p)}{n}}} = z = \frac{.54125 - .50}{\sqrt{\frac{.50(1 - .50)}{800}}} = 2.33$$
 Very close to CR

Conclusion: Accept or reject H_0 ? Test Statistics is too close to Critical value, so decision is inconclusive

Comment: Accept or reject SC? Inconclusive as who the winner will be.

P-value: 0.098 almost the same as $\alpha = 0.001$ Inconclusive.

Ŕ

2.326