Abe Mirza

Paired Samples

Objective: To test if a course/program/treatment/medication is effective as it promises? Simply put it if the promise makes a **difference** as it promises.

Examples: Super Course to increase the self confidence Weight loss program to reduce weight Pain relief medications to reduce pain SAT prep. Class to increase score New medication is **not** effective (**no change at all**)

The difference for one person who participates in the course/program/treatment/medication

d = A-B = Score After – Score Before

 μ_d = Average difference for all people who may participate in the course/program/treatment/medication

B = B efore		A = After	SC
	Higher results after		
	Super Course to increase the self confidence		$\mu_d > 0$
	SAT prep. Class to increase the scores		$\mu_d > 0$
	New medicine to increase blood flow		$\mu_d > 0$
	New treatment to increase body metabolism		$\mu_d > 0$
	Lower results after		
	Weight reduction program		$\mu_d < 0$
	Pain relief medications		$\mu_d < 0$
	New drug to reduce blood pressure		$\mu_d < 0$
	difference or no difference in results		
	New drug is not effective		$\mu_d = 0$
	New drug is effective		$\mu_d \neq 0$

6) Comment

1) SC : μ_d **2)** $H_0 : \mu_d$ OC: μ_d $H_1 : \mu_d$

 $H_1: \mu_d$

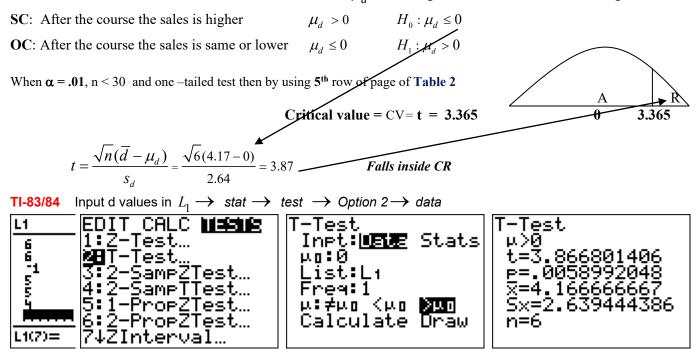
4) Test Statistics = $t = \frac{\sqrt{n}(\overline{d} - \mu_d)}{s_d}$

Section 15

Paired Samples 02/02/2020

3) To find critical value based on df = n -1 Use Table 2

7) P-value


Paired Samples

Example 1. A course is intended *to increase* the average sales of salespersons, a random sample of six salespersons and their corresponding sales before and after the course is tabulated as such:

Before	12	18	25	9	14	16	
After	18	24	24	14	19	20	
d=A - B	6	6	-1	5	5	4	$\Sigma d = 25$ $\overline{d} = 25/6 = 4.17$ $S_d = 2.64$

At $\alpha = 1\%$, can you conclude that attending this course increases the sales?

 μ_d = Average difference in sales after taking the course.

Conclusion: Accept or reject H₀? Inside CR then reject H₀

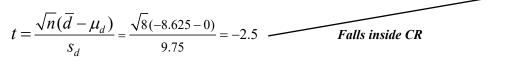
Comment: Accept or reject SC? Accept that attending this course increases the sales.

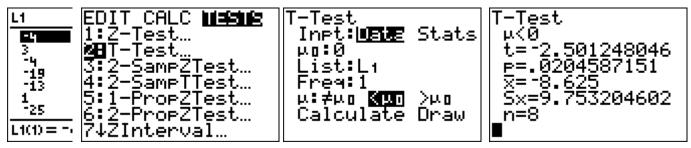
P-value: 0.005899 less than $\alpha = 0.01$ reject Ho

Example 2: A new medication claims that it reduces the pain of arthritis. The following table gives the pain reduction measurement score of eight patients before and after the medication is administrated.

Before	97	72	93	110	78	69	115	72	
	93	75	89	91	65	70	90	64	
d=A - B	-4	3	-4	-19	-13	1	-25	- 8	$\Sigma d = -69 \overline{d} = -69/8 = -8.625 s_d = 9.75$

At $\alpha = 5\%$, can you conclude that new medication reduces arthritis pain?


 μ_d = Average difference in pain after taking the medication


	SC : After the new medication the pain is lower	$\mu_d < 0$	$H_0: \mu_d$
--	--	-------------	--------------

OC: After the new medication the pain is same or higher: $\mu_d < 0$ $H_0: \mu_d \ge 0$ $H_1: \mu_d < 0$

When $\alpha = .05$, n < 30 and one -tailed test then by using 7th row of page of Table 2.

Critical value = CV = t = -1.895

Conclusion: Accept or reject H_0 ? Inside *CR* then reject H_0

Comment: Accept or reject SC? Accept that after the new medication reduces of arthritis pain.

P-value: 0.020459 less than $\alpha = 0.05$ reject Ho

R

- 1.895

Α

0