Part III

Point and Interval Estimation

<u>Topics</u>	Page		
Learning Objectives	1		
Why do we need to estimate?	2		
Formulas	3		
Normal - Table	4		
T - Table	5		
More on t - distribution	6		
Estimating Mean :	7-10		
(Large Samples $n > 30$) or σ (known) (Small Samples $n \le 30$ and σ unknown)			

For all quizzes in part 3: Be sure you have formula sheet and Table 1 and Table 2.

Learning Objectives

What do we estimate? **Population Mean** ($\mu = ?$) or **Population Proportion** (P = ?)

Why do we estimate? Due to our limited resources (Time, Money, manpower, destruction of tested subjects, widely scattered data, hardly accessible subjects).

Know all the new **terminologies** and related **notations** (Point estimate \bar{x} , \hat{p} , Margin of error)

Know all the new **formulas** on **formula sheet** and their related **TI commands**.

Know in estimating **population mean** ($\mu = ?$) when to use **normal distribution** versus **t- distribution**. Know how to use TI (**option 7 or 8**) or (**formula** $\mu = \overline{x} \pm E +$ **table**) to estimate **population mean** ($\mu = ?$).

Know how to use TI (option B) or (formula + table) to estimate difference between two population proportions $(P_1 - P_2)$.

Know how to use (formula + table) to determine sample size for Population Mean ($\mu = ?$) or Population Proportion (P = ?)

Important Note 2: As you study each page of **topics Review**, do all the problems listed at the bottom of the page from practice problem before going to the next page.

Important Note 3: For all practice problems the answers and complete solutions are given on later pages.

Important Note 4: Doing all related practice problems.

Overview

One major application of inferential statistics involves the use of sample data to estimate the value of a population parameter such as means (μ) and proportions (P).

Objectives:

- a) To introduce methods for estimating values of two important population parameters: mean (μ) and proportions (P). This can be done by using a point estimate $(\overline{X} \text{ or } \hat{P})$ that is the value of a statistic to estimates the value of a parameter $(\mu \text{ or } P)$.
- b) To present methods for determining sample sizes necessary to estimate those parameters.

Example:

- 1. Estimate the **average** life of Diehard batteries? $\mu = ?$
- 2. Estimate the **average** waiting time at a supermarket register? $\mu = ?$
- 3. Estimate the **average** clarity (in depth) of water at Lake Tahoe? $\mu = ?$
- 4. Estimate the **percentage** of residents in North America that only speak English at home? P = ?
- 5. Estimate the **percentage** of drivers text while driving? P = ?
- 6. Estimate the **percentage** of registered voters will vote for next democratic candidates? P = ?
- 7. Estimate the **average difference** in battery life between Diehard and Everlast brand? $\mu_D \mu_E = ?$
- 8. Estimate the **percentage difference** between female and male who pass stat class? $P_f P_m = ?$

Definitions:

Point estimate: Sample statistics such as $(\overline{X} \text{ or } \hat{P})$

Confidence Interval: A confidence interval (or interval estimate) is a range (or an interval) of values used to estimate the true value of a population parameter. A confidence interval is sometimes abbreviated as CI.

A confidence level: a confidences level is the probability $(1 - \alpha)$ (often expressed as the equivalent percentage value) usually 90%, 95%, or 99%.that is the proportion of times that the confidence interval actually does contain the population parameter, assuming that the estimation process is repeated a large number of times. Percentage outside confidence level is called **critical area** (α). So for example with $95\% = (1 - \alpha)$ confidence level then the critical **area** will be ($\alpha = 5\%$).

Critical Value(s): The $z_{\alpha/2}$ value that can be found from the table based on different confidence level. *Margin of error:* (also called error, error bound or maximum error) is the maximum likely difference

observed between point estimates $(\overline{X} \text{ or } \hat{P})$ and population parameter $(\mu \text{ or } P)$.

Be sure you always have this page and Normal and T-Distribution as a reference for every estimation problem

 Part 3
 Section 8
 Last Update: 02/02/2022

Estimating One Population Mean $\mu = \overline{x} \pm E$

important: If confidence level is not given use 95% as a default.						
\overline{X} = Point estimate (Sample Mean)		E = Margin of error(error bound)				
Decision making process based on σ (population standard deviation)						
	$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$ σ (known or given)	(For $z_{\alpha/2}$, use Table page 3)				
of Error	$E = z_{\alpha/2} \frac{s}{\sqrt{n}}$ (unknown or not given) and $n > 30$ (For $z_{\alpha/2}$, use Table page 3)					
	$E = t_{\alpha/2} \frac{s}{\sqrt{n}}$ (unknown or not given) and $n \le 30$ (For $t_{\alpha/2}$, use Table page 4)					
	Population is normally distributed					
Interval Estimate	$\mu = \overline{x} \pm E$	$\mu = \overline{x} \pm E$				
TI-83/84	stat \rightarrow tests \rightarrow Option 7(Z-interval)	stat \rightarrow tests \rightarrow Option 8(t-interval)				
Width (difference between upper and lower bounds) = $2E = UB - LB$ so $E = (UB - LB) / 2$						
Four Estimate (induct of upper and lower bounds) $= x^2 - (0b + Lb)/2$						

Estimating Population	Proportion $P = \hat{p} \pm E$				
$\hat{\mathbf{P}} = \frac{\mathbf{x}}{\mathbf{n}}$ (Called p-hat is sample proportion and point estimate for population proportion)	E = Margin of error	$\mathbf{E} = \mathbf{z}_{\alpha/2} \sqrt{\frac{\hat{\mathbf{p}}(1-\hat{\mathbf{p}})}{n}}$			
Width (difference between upper and lower bounds) = $2E = UB - LB$ so $E = (UB - LB) / 2$					
Point Estimate (middle of upper and lower bounds) = $\hat{p} = (UB + LB) / 2$					
TI-83 stat \rightarrow test \rightarrow Option A					

Estimating the <i>difference</i> between Two Populations <i>Means</i> or <i>Proportions</i>				
Mean $\mu_1 - \mu_2$	Proportion $P_1 - P_2$			
$\mu_1 - \mu_2 = (\overline{x}_1 - \overline{x}_2) \pm E$	$P_1 - P_2 = (\hat{p}_1 - \hat{p}_2) \pm E$			
Point estimate $=(\overline{x}_1 - \overline{x}_2)$	Point estimate $=(\hat{p}_1 - \hat{p}_2)$			
$E = z_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	$E = z_{\alpha/2} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$			
TI-83/84 stat \rightarrow test \rightarrow Option 9	TI-83/84 stat \rightarrow test \rightarrow B			

Sample Size Determination for the Estimation of Population				
Mean = μ	Proportion = P			
$n = \left(\mathbf{Z}_{\alpha/2} S / E\right)^2$	$\boldsymbol{n} = \left(\mathbf{Z}_{\boldsymbol{\alpha}/2} / E \right)^2 \hat{\boldsymbol{p}}(1 - \hat{\boldsymbol{p}})$			
If S is unknown then estimate it by $S = Range / 4$	If \hat{p} is unknown then estimate it by $\hat{p} = 0.5$			

	Confidence Level	Out Side Area On left or right Cut-off Point	Z - Value (\pm) Critical Value = $Z_{\alpha/2}$	
	99%	.005	± 2.5758	
	98%	.01	±2.3263	
.01	97%	.015	±2.1701	
0 2.33	96%	.02	±2.0537	
	95%	.025	±1.9600	
OR	94%	.03	±1.8808	
	92%	.04	∠ ±1.7507	
Out Side Area	90%	.05	±1.6450	
Bottom 1 %	88%	.06	±1.5548	
\sim	86%	.07	±1.4758	
	84%	.08	±1.4051	
	82%	.09	±1.3408	
.01	80%	.10	±1.2816	
-2.33 0	/ 78%	.11	±1.2265	
	76%	.12	±1.1750	
	70%	.15	±1.0364	
	60%	.20	±0.8416	
	50%	.25	±0.6749	
How to find the 7 value for confidence	40%	.30	±0.5244	
intervals.				


```
Example: 2nd \rightarrow Distr \rightarrow Option 3 input (.95,0,1) enter, then the answer will be 1.645
Hint for TI % is the area to the left of the cut off point.
```

Part 3 Section 8 Last Update: 02/02/2022 1.645

90 %

45 % 45 %

0

%

- 1.645

0.4 0.3 0.3 0.1 0	t -Distribution for small sample $n < 30$ and σ Unknown								
	df = n-1	<>							
	2-Tailed	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.005
	1-Tailed	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.0025
	Conf. Levl.	60%	70%	80%	90%	95%	98%	99%	99.5%
	1	1.376	1.963	3.078	6.314	12.706	31.821	63.656	127.321
	2	1.061	1.386	1.886	2.920	4.303	6.965	9.925	14.089
	3	0.978	1.250	1.638	2.353	3.182	4.541	5.841	7.453
	4	0.941	1.190	1.533	2.132	2.776	3.747	4.604	5.598
	5	0.920	1.156	1.476	2.015	2.571	3.365	4.032	4.773
	6	0.906	1.134	1.440	1.943	2.447	3.143	3.707	4.317
	7	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.029
	8	0.889	1.108	1.397	1.860	2.306	2.896	3.355	3.833
	9	0.883	1.100	1.383	1.833	2.262	2.821	3.250	3.690
	10	0.879	1.093	1.372	1.812	2.228	2.764	3.169	3.581
	11	0.876	1.088	1.363	1.796	2.201	2.718	3.106	3.497
	12	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.428
	13	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.372
	14	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.326
	15	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.286
	16	0.865	1.071	1.337	1.746	2.120	2.583	2.921	3.252
	17	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.222
	18	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.197
	19	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.174
	20	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.153
	21	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.135
	22	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.119
	23	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.104
	24	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.091
	25	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.078
	26	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.067
	27	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.057
	28	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.047
	29	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.038
for	30	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.030
<i>n</i> > 30	n>30 ⇒ Z	0.842	1.036	1.282	1.645	1.96	2.326	2.576	2.807
Bottom /	2 -T	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.005
row	1-1 Conf. Levl.	60%	0.15 70%	0.10 80%	90%	95%	98%	99%	99.5%

T-Distribution vs. the Normal Distribution for Confidence Interval for Means

Main Point to Remember:

You must use the t-distribution table when working problems when the population standard deviation (σ) is not known and the sample size is small (n<30).

General Correct Rule:

If σ is not known, then using t-distribution is correct. If σ is known, then using the normal distribution is correct.

What is Most Common Practice:

Since people often prefer to use the normal, and since the t-distribution becomes equivalent to the normal when the number of cases becomes large, common practice often is:

- If σ known, then use normal.
- If σ not known:
 - \circ If n is large, then use normal.
 - If n is small, then use t-distribution.

What is Another Common Way Textbooks Teach This:

Textbooks often simplify this to "large-sample" vs. "small-sample" methods; use normal distribution with large samples and t-distribution with small samples. This is right almost all the time, because in real sampling problems we seldom have a basis for knowing σ . However, there can be some situations when we do have a basis for assuming a value for σ , such as using a σ based on past data, and in those situations even if sample size is small the correct procedure would be to use the normal distribution, so the simplified "large-sample" vs. "small sample" approach would lead to an error.

t distribution

 t distribution looks like a normal distribution, but has "thicker" tails. The tail thickness is controlled by the degrees of freedom

- The smaller the degrees of freedom, the thicker the tails of the *t* distribution
- If the degrees of freedom is large (if we have a large sample size), then the t distribution is pretty much identical to the normal distribution

Estimating one population Mean $\mu = \overline{x} \pm E$

- a) What do we estimate? Population mean (μ) or sample mean (\bar{x}) or both?
- b) Why do we need to estimate? Cite some reasons?
- c) What is the point estimate?
- d) What is the confidence level?
- e) What is the criteria of t-distribution?
- f) Under what condition we use t-distribution?
- g) What is the formula for degree of freedom df = ?
- h) What is the margin of error and what are three different possible formulas for it?
- i) Where you can find the z table and under what condition you will be using this table?
- j) Where you can find the t table and under what condition you will be using this table?
- k) What is the width of a confidence interval?
- I) How we can use the upper and lower boundaries of a confidence interval to find point estimate?
- m) How we can use the width of a confidence interval to find margin of error?
- n) How to use TI calculator to find the boundaries of a confidence interval when we use normal distribution?
- o) How to use TI calculator to find the boundaries of a confidence interval when we use t-distribution?
- A) For the following problems decide to z or t value or neither?
 - 1) Sample size n = 20, s = 4 and the population is normally distributed? z or t value : t value
 - 2) Sample size n = 19, $\sigma = 4$ and the population is normally distributed? z or t value: z value
 - 3) Sample size n = 18, s = 4 and the population is normally distributed? z or t value : t value
 - 4) Sample size n = 10, $\sigma = 4$ and the population is normally distributed? z or t value: z value
 - 5) Sample size n = 100, s = 4 and the population is normally distributed? z or t value: z value

Find the margin of error for the following problems by using the z-table(page 4) or t-table(page 5)? Be sure you if you use t-table, you subtract 1 from n and then use (n-1) row to find the t-value

B)
$$E = Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$
 B) $E = Z_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$ $n > 30$ **C)** $E = t_{\alpha/2, df} \left(\frac{s}{\sqrt{n}} \right)$ $n \le 30$

- 1) Sample size n = 36, $\sigma = 4$ and 95% confidence level?
- 2) Sample size n = 16, s = 8 and 99% confidence level?
- 3) Sample size n = 18, $\sigma = 30$ and 90% confidence level?
- 4) Sample size n = 100, s = 4 and 97% confidence level?
- 5) Sample size n = 14, s = 10 and the 95% confidence level? Solution on the next page!

Answer: 1.31 Answer: 5.894 Answer: 11.6 Answer: 0.868 Answer: 5.773 1)Sample size n = 36, $\sigma = 4$, 95% and confidence level? **Z**-*value* when σ is given $E = 1.96 \frac{4}{\sqrt{36}} = 1.31$ 2)Sample size n = 16, s = 8, and 99% confidence level? **t**-*value* when σ unknow, n<30 $E = 2.947 \frac{8}{\sqrt{16}} = 5.894$ 3)Sample size n = 18, $\sigma = 30$, and 90% confidence level? **Z**-*value* when σ is given $E = 1.645 \frac{30}{\sqrt{18}} = 11.6$ 4)Sample size n = 100, s = 4, and 97% confidence level? **Z**-*value* when n>30 $E = 2.17 \frac{4}{\sqrt{100}} = 0.868$ 5)Sample size n = 14, s = 10, and 95% confidence level? **t**-*value* when σ unknow, n<30 $E = 2.16 \frac{10}{\sqrt{14}} = 5.77$

C) Important properties about the relationship of sample size and confidence level and increase, decrease, of

$$E=z\frac{\sigma}{\sqrt{n}}.$$

a) As the sample size (n) decreases, the margin of error (E) increases

b) As the confidence level (C) decreases, the margin of error (E) decreases

i)
$$\bar{x} \pm Z_{\alpha/2} \left(\frac{\sigma}{\sqrt{n}} \right)$$
 ii) $\bar{x} \pm Z_{\alpha/2} \left(\frac{s}{\sqrt{n}} \right)$ $n > 30$ iii) $\bar{x} \pm t_{\alpha/2, df} \left(\frac{s}{\sqrt{n}} \right)$ $n \le 30$

1) A random sample of 36 life insurance policy holders showed that the average premiums paid on their life insurance policies was \$340 per year with a standard deviation of \$24. Construct a 95% confidence interval for the population mean. n = 36 $\overline{x} = 340$ $\sigma =$ or s = 24Because sample size is more than 30, we use normal distribution

$$E = z\left(s / \sqrt{n}\right) = 1.96 \frac{24}{\sqrt{36}} = 7.84 \qquad \mu = 340 \pm 7.84 \qquad \$332.16 < \mu < \$347.84$$

2) A random sample of 9 life insurance policy holders showed that the average premiums paid on their life insurance policies was \$340 per year with a standard deviation of \$24. Construct a 95% confidence interval for the population mean. n = 9 $\overline{x} = 340$ $\sigma =$ or s = 24Because sample size is less than 30, we use t distribution

$$E = t\left(s / \sqrt{n}\right) = 2.306 \frac{24}{\sqrt{9}} = 18.45 \qquad \mu = 340 \pm 18.45 \qquad \$321.55 < \mu < \$358.45$$

3) A random sample of 9 life insurance policy holders showed that the average premiums paid on their life insurance policies was \$340 per year and population standard deviation of \$24. Construct a 95% confidence interval for the population mean. n = 9 $\overline{x} = 340$ $\sigma = 24$ or s =Because sample size is less than 30,but population standard deviation is given then we use normal distribution

$$E = z \left(\sigma / \sqrt{n} \right) = 1.96 \frac{24}{\sqrt{9}} = 15.68 \qquad \mu = 340 \pm 15.68 \qquad \$324.32 < \mu < \$355.68$$

Part 3 Section 8 Last Update: 02/02/2022

4) A company that produces white bread is concerned about the distribution of the amount of sodium in its bread. The company takes a simple random sample of 25 slices of bread and computes the sample mean to be 100 milligrams of sodium per slice. Construct a 90% confidence interval for the unknown mean sodium level assuming that the sample standard deviation is 10 milligrams.

 $n = 25 \qquad \overline{x} = 340 \qquad \sigma = \qquad \text{or} \qquad s = 10 \text{ Because sample size is less than 30, we use t distribution}$ $E = t\left(s / \sqrt{n}\right) = 1.711 \frac{10}{\sqrt{25}} = 3.42 \qquad \mu = 100 \pm 3.42 \qquad 96.58 < \mu < 103.42$

5) The football coach randomly selected eight players and timed how long it took to perform a certain drill. The times in minutes were: 12, 9, 13, 7, 8, 13, 16, 10. Assuming that the times follow a normal distribution, find a 90% confidence interval for the population mean. n = 8 $\overline{x} = 11$ $\sigma =$ or s = 3.02Because sample size is less than 30, we use t distribution

$$E = t\left(s / \sqrt{n}\right) = 1.895 \frac{3.02}{\sqrt{8}} = 2.02 \qquad \mu = 11 \pm 2.02 \qquad 8.98 < \mu < 13.02$$

Estimating the μ = average life of Diehard batteries by using **95%** confidence Level. A sample of **64** batteries has $\bar{\mathbf{x}} = 50$ months. From prior study, we know $\sigma = 10$ months Solution by Formula σ known, $\rightarrow E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}} = 1.96 \frac{10}{\sqrt{64}}$ E = 2.45 $\mu = 50 \pm 2.45$ $47.55 < \mu < 52.45$ By 95% confidence, the average life of Diehard batteries is between 47.55 to 52.45 months Solution by TI 83/84 Calculator σ known \rightarrow TI-83/84 stat \rightarrow tests \rightarrow Option 7 ZInterval ZInterval <u>(47.</u>55,52.45) Inpt:Data σ:10 x:50 x=50 n=64 n:64 Č−Lével∶.95 Calculate E = (UB - LB) / 2 = (52.45 - 47.55) / 2 = 2.45

Estimating the μ = average life of Diehard batteries by using **95%** confidence Level when a sample of **6** batteries provides these data 48,54,57,45, 56,52 Solution by Formula Hint: to use the formula, you need to calculate $\overline{\mathbf{x}} = ? \cdot s = ? \overline{\mathbf{x}} = 52$ months $\cdot s = 4.69$ months (σ unknown, and $n \le 30$) (for t- value use table page 4) df = 6-1 $t_{a/2} = 2.571$ $E = 2.571 \frac{4.69}{\sqrt{6}}$ E = 4.92 $\mu = 52 \pm 4.92$ $47.08 < \mu < 56.92$ Solution by TI 83/84 Calculator input data in L1 then, (σ unknown, and $n \le 30$) \rightarrow TI-83/84 stat \rightarrow tests \rightarrow Option 8 E = (UB - LB) / 2 = (56.92 - 47.08) / 2 = 4.92

Summary in deciding Normal or t-Distribution in estimating One Population Mean $\mu = \overline{x} \pm E$

σ (population st. dev.)	<i>n</i> > 30	σ is unknown ,	Raw Data Only	
is known	σ is unknown	and $n < 30$	n < 30	
$\sigma = 10$	Sample	Sample	<i>Sample</i> 42,48,52,58	
Sample	n = 64	n = 9	n = 4	
n = 9	$\overline{x} = 50$	$\overline{x} = 50$	$\overline{x} = 50$	
$\overline{x} = 50$	s = 10	s = 10	s = 6.73	
Confidence Level	Confidence Level	Confidence Level	Use 95 % Confidence Level	
			Confidence Level	
$\mu = \overline{x} \pm E = 50 \pm E$	$\mu = \overline{x} \pm E = 50 \pm E$	$\mu = \overline{x} \pm E = 50 \pm E$	$\mu = \overline{x} \pm E = 50 \pm E$	
σ is known, use	n > 30, use	σ is unknown, and n < 30	σ is unknown, and	
Normal distribution	Normal distribution	use <i>t- distribution</i>	n < 30 use <i>t</i> - distribution	
$E = z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$	$E = z_{\alpha/2} \frac{s}{\sqrt{n}}$	$E = t_{\alpha/2} \frac{s}{\sqrt{n}}$	$E = t_{\alpha/2} \frac{s}{\sqrt{n}}$	
(for $z_{\alpha/2}$ - value use table	(for <i>z_{wo}</i> - value use table	(for t in - value use table	(for t value use table	
on page 4)	on page 4)	$(11) \frac{\alpha}{\alpha/2}$ (11) $(11) \frac{\alpha}{\alpha}$	(for $l_{\alpha/2}$ - value use table	
			on page 5)	
For 95% confidence	For 95% confidence	Use 95% column with df=9-1=8	Use 95% column with df=4-1=3	
$z_{\alpha/2} = 1.96$	$z_{\alpha/2} = 1.96$	$t_{\alpha/2} = 2.306$	$t_{\alpha/2} = 3.182$	
$E = 1.96 \frac{10}{\sqrt{9}} = 6.53$	$E = 1.96 \frac{10}{\sqrt{64}} = 2.45$	$E = 2.306 \frac{10}{\sqrt{9}} = 7.69$	$E = 3.182 \frac{6.73}{\sqrt{4}} = 10.71$	
$\mu = 50 \pm 6.53$	$\mu = 50 \pm 2.45$	$\mu = 50 \pm 7.69$	$\mu = 50 \pm 10.71$	
43.47 < <i>µ</i> < 56.53	$47.55 < \mu < 52.45$	42.31 < <i>µ</i> < 57.69	$39.29 < \mu < 60.71$	
Or	Or	Or	Or	
(43.47 , 56.53)	(47.55 , 52.45)	(42.31 , 57.69)	(39.29 , 60.71)	
By 95% confidence, the population average is between 43.47 and 56.53	By 95% confidence, the population average is between 47.55 and 52.45	By 95% confidence, the population average is between 42.31 and 57.69	By 95% confidence, the population average is between 39.29 and 60.71	
TI Instruction	TI Instruction	TI Instruction	TI Instruction	
stat \rightarrow tests \rightarrow Option 7	stat \rightarrow tests \rightarrow Option 7	stat \rightarrow tests \rightarrow Option 8	stat \rightarrow tests \rightarrow Option 8	

6) The actual time it takes to cook a ten-pound turkey is a normally distributed. Suppose that a random sample of 9 ten pound turkeys is taken. Given that an average of 2.9 hours and a standard deviation of .24 hours was found for a sample of 9 turkeys, calculate a 95% confidence interval for the average cooking time of a tenpound turkey. $n = \overline{x} = \sigma = \sigma s =$

E =

 $\mu =$

 $2.72 < \mu < 3.08$