For all quizzes in part 3: Be sure you have formula sheet and Table 1 and Table 2.

Quiz # 9: This quiz covers all materials on quiz 8 plus estimating population proportions.

What do we estimate? **Population Proportion** (P = ?)Know all the new **terminologies** and related **notations** (Point estimate \hat{p} , Margin of error) Know all the new **formulas** on **formula sheet** and their related **TI commands**. To estimate **population proportion** (P = ?), know how to use TI (**option A**) or (**formula** $P = \hat{p} \pm E$)

Be sure you always have <u>Table 1</u> as a reference for every estimation problem

Important: If confidence level is not given use 95% as a default.

Required formula: $P = \hat{p} \pm E$ $E = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ and **Table 1** (see page 4)

Example 1: Use **95%** confidence Level to estimate the percentage of drivers texting while driving when in a sample of 100 drivers 40 text and drive.

First we need to find the point estimate, $\hat{\mathbf{P}} = \frac{\mathbf{x}}{\mathbf{n}} = \frac{40}{100} = .40$, <u>from Table 1 from page 4</u> for 95% confidence level

the z will be 1.96 so the $\mathbf{E} = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 1.96 \sqrt{\frac{.4(1-.4)}{100}} = .096$, so now $P = .40 \pm 0.096 = 40\% \pm 9.6\%$

Final answer: We have 95% confidence that between 30.39% to 49.6% of drivers text while driving.

Solution by TI 83/84 Calculator

```
stat \dots \rightarrow test \dots \rightarrow option
```

1-PropZInt x:40 n:100 C-Level:.95 Calculate	1-PropZInt (.30398,.49602) #=.4 n=100
---	--

Example 2: In a sample of 400 applicants for DMV driving test, 280 passed on the first attempt. Find 90% confidence interval of all DMV applicants who pass DMV test on the first attempt.

First $\hat{\mathbf{P}} = \frac{\mathbf{x}}{\mathbf{n}} = \frac{280}{400} = .70$, from Table 1 for 90% confidence level the z will be 1.645 so the $\mathbf{E} = z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 1.645 \sqrt{\frac{.7(1-.7)}{400}} = .038$ then using $P = \hat{p} \pm E = .70 \pm 0.038 = 70\% \pm 3.8\%$

Final answer: We have 90% confidence that between 66.2% to 73.8% of DMV applicant pass driving test on the first attempt.

Estimating Population Proportion $P = \hat{p} \pm E$					
$\hat{\mathbf{P}} = \frac{\mathbf{x}}{\mathbf{n}}$	(Called p-hat is sample proportion and	E = Margin of error	$\mathbf{E} = z_{\alpha/2} \sqrt{\frac{\hat{\mathbf{p}}(1-\hat{\mathbf{p}})}{n}}$		
	point estimate for population proportion)				
Width (difference between upper and lower bounds) = $2E = UB - LB$ so $E = (UB - LB) / 2$					
Point Estimate (middle of upper and lower bounds) = $\hat{p} = (UB + LB) / 2$					
TI-83 stat \rightarrow test \rightarrow Option A					

1. If 64% of a sample of 550 people leaving a shopping mall claims to have spent over \$25, determine a 99% confidence interval estimate for the proportion of shopping mall customers who spend over \$25. Interpret your interval.

$$E = 2.5758 \sqrt{\frac{0.64(1 - 0.64)}{550}} = .0527 \qquad P = 0.64 \pm 0.0527 \qquad 58.73\% < P < 69.27\%$$

In a random sample of machine parts, 18 out of 225 were found to have been damaged in shipment. Establish a 95% confidence interval estimate for the proportion of machine parts that are damaged in shipment. Interpret your interval.

$$\hat{p} = \frac{x}{n} = \frac{18}{225} = 0.08$$
 $E = 1.96\sqrt{\frac{0.08(1 - 0.08)}{225}} = .0354$ $P = 0.08 \pm 0.0354$ $4.5\% < P < 11.5\%$

3. A telephone survey of 1000 adults was taken shortly after the U.S. began bombing Iraq. If 832 voiced their support for this action. Create a 99% confidence interval and interpret the interval.

 $\hat{p} = \frac{x}{n} = \frac{832}{1000} = 0.832 \qquad E = 2.5758 \sqrt{\frac{0.832(1 - 0.832)}{1000}} = .0305 \qquad P = 0.832 \pm 0.0305 \quad 80.16\% < P < 86.25\%$

- **4.** An assembly line does a quality check by sampling 50 of its products. It finds that 16% of the parts are defective.
 - a. Create a 95% confidence interval for the percent of defective parts for the company and interpret this interval.

$$E = 1.96\sqrt{\frac{0.16(1 - 0.16)}{50}} = .102 \qquad P = 0.16 \pm 0.102 \qquad 0.06\% < P < 26.16\%$$

- b. If we decreased the confidence level to 90% what would happen to:
 - i. the critical value? It decreases from 1.96 to 1.645
 - ii. the margin of error? It will decrease
 - iii. the confidence interval? It will become narrower
- c. If the sample size were increased to 200, the same sample proportion were found, and we did a 95% confidence interval; **what would happen to**:
 - i. the critical value? By just increasing the sample size the critical value will not change
 - ii. the margin of error? By increasing sample size, the margin of error will decrease.
 - iii. the confidence interval? By increasing sample size, the interval will be narrower.

- **5.** A nationwide poll was taken of 1400 teenagers (ages 13-18). 630 of them said they have a TV in their room.
 - a. Create a 90% confidence interval for the proportion of all teenagers who have a TV in their room and interpret it.

$$\hat{p} = \frac{x}{n} = \frac{630}{1400} = 0.45 \qquad E = 1.645 \sqrt{\frac{0.45(1 - 0.45)}{1400}} = .0133 \qquad P = 0.45 \pm 0.0133 \qquad 43.67\% < P < 46.33\%$$

What does "90% confidence" mean in this context?

If we increased the confidence level to 99% what would happen to:

- i. the critical value? It increases 1.645 to 2.5758
- ii. the margin of error? It will increase.
- iii. the confidence interval? It will become wider.
- **6.** If the sample size were changed to 950, the same sample proportion were found, and we did a 90% confidence interval; what would happen to:
 - ii. the critical value? By just decreasing the sample size the critical value will not change
 - iii. the margin of error? It will increase
 - iv. the confidence interval? It will become wider.
- 7. Suppose a 90% confidence interval is stated as (0.3011, 0.4189).
 - a. What is the sample proportion from this sample? $\hat{p} = (UB + LB) / 2 = (0.4189 + 0.3011) / 2 = 0.36$
 - b. What is the margin of error? E = (UB LB) / 2 = (0.4189 0.3011) / 2 = 0.0580

Out Side Area	Confidence Level	Out Side Area On left or right Cut-off Point	Z - Value (\pm) Critical Value = $Z_{\alpha/2}$		
	99%	.005	± 2.5758		
. Тор 1 %	98%	.01	±2.3263		
	97%	.015	±2.1701		
	96%	.02	±2.0537		
0 2.33	95%	.025	±1.9600		
	94%	.03	±1.8808		
OR	92%	.04	±1.7507		
Qué Side Area	90%	.05	±1.6450		
Out Side Area	88%	.06	±1.5548		
Bottom 1 %	86%	.07	±1.4758		
	84%	.08	±1.4051		
 .01	82% /	.09	±1.3408		
	80%	.10	±1.2816		
	78%	.11	±1.2265		
-2.33 0	76%	.12	±1.1750		
	70%	.15	±1.0364		
	60%	.20	±0.8416		
	50%	.25	±0.6749		
	40%	.30	±0.5244		
How to find the Z -value for confidence intervals.					
Example: Find the Z - value for 90% confidence interval1. Divide $90\% = 0.90$ by $2, \Rightarrow .90/2 = 0.45$ 2. Subtract 0.45 from $0.5 \Rightarrow .5 - 0.45 = .05$ 3. Look for area close to 0.05 from inside the table (page1).4 Find its corresponding Z-value (- 1.645)					
		-	1.645 0 1.645		

TI-83/84 $2nd \rightarrow Distr \rightarrow Option 3$ input (%, 0, 1) Example: $2nd \rightarrow Distr \rightarrow Option 3$ input (.05, 0, 1) enter, then the answer will be - 1.645 Example: $2nd \rightarrow Distr \rightarrow Option 3$ input (.95, 0, 1) enter, then the answer will be 1.645 Hint for TI % is the area to the left of the cut off point.

Section 9 Topics Review Last Update: 12/12/2022