For all quizzes in part 3: Be sure you have formula sheet and Table 1 and Table 2.

Quiz \# 9: This quiz covers all materials on quiz 8 plus estimating population proportions.
What do we estimate? Population Proportion ($P=$?)
Know all the new terminologies and related notations (Point estimate \hat{p}, Margin of error)
Know all the new formulas on formula sheet and their related TI commands.
To estimate population proportion ($P=$?), know how to use $\mathrm{TI}($ option \mathbf{A}) or (formula $\mathrm{P}=\hat{\mathrm{p}} \pm \mathrm{E}$)

Be sure you always have Table 1 as a reference for every estimation problem
Important: If confidence level is not given use $\mathbf{9 5 \%}$ as a default.
Required formula: $\mathrm{P}=\hat{\mathrm{p}} \pm \mathrm{E} \quad \mathbf{E}=\boldsymbol{z}_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}}$ and Table 1 (see page 4)

Example 1: Use 95\% confidence Level to estimate the percentage of drivers texting while driving when in a sample of 100 drivers 40 text and drive.
First we need to find the point estimate, $\hat{\mathbf{P}}=\frac{\mathbf{x}}{\mathbf{n}}=\frac{40}{100}=.40, \underline{\text { from Table } 1 \text { from page } \mathbf{4}}$ for 95% confidence level the z will be 1.96 so the $\mathbf{E}=z_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}}=\mathbf{1 . 9 6} \sqrt{\frac{.4(1-.4)}{100}}=.096$, so now $P=.40 \pm 0.096=40 \% \pm 9.6 \%$

Final answer: We have 95% confidence that between $\mathbf{3 0 . 3 9 \%}$ to $\mathbf{4 9 . 6 \%}$ of drivers text while driving.


```
1-PromZInt.
(.30.398,.49602)
    F=.4
    n=100
```

Example 2: In a sample of 400 applicants for DMV driving test, 280 passed on the first attempt. Find 90% confidence interval of all DMV applicants who pass DMV test on the first attempt.
First $\hat{\mathbf{P}}=\frac{\mathbf{x}}{\mathbf{n}}=\frac{280}{400}=.70$, from Table 1 for 90% confidence level the z will be 1.645 so the
$\mathbf{E}=z_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}}=\mathbf{1 . 6 4 5} \sqrt{\frac{.7(1-.7)}{400}}=.038$ then using $P=\hat{p} \pm E=.70 \pm 0.038=70 \% \pm 3.8 \%$
Final answer: We have 90% confidence that between $\mathbf{6 6 . 2 \%}$ to $\mathbf{7 3 . 8 \%}$ of DMV applicant pass driving test on the first attempt.

Estimating Population Proportion $\quad \mathrm{P}=\hat{\mathrm{p}} \pm \mathrm{E}$				
$\hat{\mathbf{P}=\frac{\mathbf{x}}{\mathbf{n}}}$(Called p-hat is sample proportion and point estimate for population proportion)	$\mathbf{E}=$ Margin of error	$\mathbf{E}=\boldsymbol{z}_{\alpha / 2} \sqrt{\frac{\hat{\mathrm{p}}(1-\hat{\mathrm{p}})}{\mathrm{n}}}$		
Width (difference between upper and lower bounds) $=2 E=U B-L B \quad$ so $\quad E=(U B-L B) / 2$				
Point Estimate (middle of upper and lower bounds) $=\hat{p}=(U B+L B) / 2$				
TI-83 stat \rightarrow test \rightarrow Option \boldsymbol{A}				

1. If 64% of a sample of 550 people leaving a shopping mall claims to have spent over $\$ 25$, determine a 99% confidence interval estimate for the proportion of shopping mall customers who spend over \$25. Interpret your interval.
$E=2.5758 \sqrt{\frac{0.64(1-0.64)}{550}}=.0527 \quad P=0.64 \pm 0.0527 \quad 58.73 \%<P<69.27 \%$
2. In a random sample of machine parts, 18 out of 225 were found to have been damaged in shipment. Establish a 95% confidence interval estimate for the proportion of machine parts that are damaged in shipment. Interpret your interval.
$\hat{p}=\frac{x}{n}=\frac{18}{225}=0.08 \quad E=1.96 \sqrt{\frac{0.08(1-0.08)}{225}}=.0354 \quad P=0.08 \pm 0.0354 \quad 4.5 \%<P<11.5 \%$
3. A telephone survey of 1000 adults was taken shortly after the U.S. began bombing Iraq. If 832 voiced their support for this action. Create a 99% confidence interval and interpret the interval.
$\hat{p}=\frac{x}{n}=\frac{832}{1000}=0.832 \quad E=2.5758 \sqrt{\frac{0.832(1-0.832)}{1000}}=.0305 \quad P=0.832 \pm 0.0305 \quad 80.16 \%<P<86.25 \%$
4. An assembly line does a quality check by sampling 50 of its products. It finds that 16% of the parts are defective.
a. Create a 95% confidence interval for the percent of defective parts for the company and interpret this interval.

$$
E=1.96 \sqrt{\frac{0.16(1-0.16)}{50}}=.102 \quad P=0.16 \pm 0.102 \quad 0.06 \%<P<26.16 \%
$$

b. If we decreased the confidence level to 90% what would happen to:
i. the critical value? It decreases from 1.96 to 1.645
ii. the margin of error? It will decrease
iii. the confidence interval? It will become narrower
c. If the sample size were increased to 200 , the same sample proportion were found, and we did a 95% confidence interval; what would happen to:
i. the critical value? By just increasing the sample size the critical value will not change
ii. the margin of error? By increasing sample size, the margin of error will decrease.
iii. the confidence interval? By increasing sample size, the interval will be narrower.
5. A nationwide poll was taken of 1400 teenagers (ages $13-18$). 630 of them said they have a TV in their room.
a. Create a 90% confidence interval for the proportion of all teenagers who have a TV in their room and interpret it.
$\hat{p}=\frac{x}{n}=\frac{630}{1400}=0.45 \quad E=1.645 \sqrt{\frac{0.45(1-0.45)}{1400}}=.0133 \quad P=0.45 \pm 0.0133 \quad 43.67 \%<P<46.33 \%$
What does " 90% confidence" mean in this context?
If we increased the confidence level to 99% what would happen to:
i. the critical value? It increases 1.645 to 2.5758
ii. the margin of error? It will increase.
iii. the confidence interval? It will become wider.
6. If the sample size were changed to 950 , the same sample proportion were found, and we did a 90% confidence interval; what would happen to:
ii. the critical value? By just decreasing the sample size the critical value will not change
iii. the margin of error? It will increase
iv. the confidence interval? It will become wider.
7. Suppose a 90% confidence interval is stated as ($0.3011,0.4189$).
a. What is the sample proportion from this sample? $\hat{p}=(U B+L B) / 2=(0.4189+0.3011) / 2=0.36$
b. What is the margin of error? $E=(U B-L B) / 2=(0.4189-0.3011) / 2=0.0580$

Based on Standard Normal Distribution $\mu=0$ and $\sigma=1$

How to find the \mathbb{Z}-value for confidence intervals.
Example: Find the Z - value for $\mathbf{9 0 \%}$ confidence interval 1. Dif ide $90 \%=0.90$ by $2, \Rightarrow .90 / 2=0.45$
2. Subtract 0.45 from $0.5 \Rightarrow .5-0.45=.05$
3. Look for area close to 0.05 from inside the table (page1).

4 Find its corresponding Z-value (-1.645)

TI-83/84 2nd \rightarrow Distr \rightarrow Option 3 input $(\%, 0,1)$
Example: 2nd \rightarrow Distr \rightarrow Option 3 input ($.05,0,1$) enter, then the answer will be -1.645
Example: 2nd \rightarrow Distr \rightarrow Option 3 input ($95,0,1$) enter, then the answer will be 1.645
Hint for $\mathrm{TI} \%$ is the area to the left of the cut off point.

