General Introduction

The Purpose of statistics: Statistics has many uses, but perhaps its most important purpose is to help us make decisions about issues that involve uncertainty.

Definition of Statistics:

1. Numerical Facts
2. Average price for one-bedroom apartment at the city of Rocklin is $\$ 895$.
3. 80% of Sierra students graduate in 2 years.
4. COD A Collection, Organization, Description, Analysis, and interpretation of data.

Collection: Data Sampling
Organization: Frequency Table (Bar-chart, Pie-chart), Histogram, Frequency Polygon, Ogive Curve

Description: Mean, Mode, Median, Range, Variance, Standard Deviation SD, Quartiles, Percentiles, Box Plot

Analysis: Correlation and Regression, Estimation, Test of Hypothesis, Analysis of Variance

Types of Statistics:

Descriptive: Collection, Organization, Description

Inferential: Analysis and interpretation of data

What is the statistics all about?

1. It is about how we test if a new drug is effective in treating cancer.
2. It is about opinion polls, pre-election polls, and exit polls.
3. It is about sports, where we rank players and teams primarily through their statistics.
4. It is about the market research and the effectiveness of advertising
5. It is about how agricultural inspectors ensure the safety of the food supply.

Population versus Sample:

Population: Entire elements or subjects under study that share one or more common characteristic such as age, gender, major or race. (Keyword all/every), All college students, All Sierra College students, All male Sierra College Students who are taking statistics and majoring in business. Two Elements: Time and Place

Sample: A portion of population.
Census: The collection of data from every element in a population.
Parameter vs. statistic: A numerical measurement describing some characteristic of a
Population (called parameter) vs. a Sample (called statistic)
Hint: Use Greek Alphabet for parameter and lower case English for statistic.

$$
\mu=\text { avg. } \sigma(\text { sigma })=\text { st. dev } \chi^{2}=\text { Chi-squared.... } \bar{X}, \text { s, } r
$$

Extra Practice: Answer questions A from page 1 of practice problem part 1

Types of Data:

Qualitative (Names, Labels ...) pass / fail, democrat/republican/independent, yes/no, grades (A,B,C,D,F)
Quantitative: 1. Discrete (Countable): number of accidents in Rocklin each day, number of emergency call to 911 center each day, number of students that will pass Abe stat class
2. Continuous (Measurable): Speed, weight, time, capacity, length, volume, area

Extra Practice: Answer questions B from page 1 of practice problem part 1

Types of Sampling: R_S_S_C_C

1. Random: Every member of population has equal chance to be selected.

How? Every member will be assigned a different number, and we select random numbers by a computer or a table and match those with the members' numbers.
2. Systematic: We select some starting point and then select every kth (such as every $20^{\text {th }}$) member in the population.
How? Every $10^{\text {th }}$ customer or client will be selected to be asked questions.
3. Stratified: Subdivide the population into at least two different subgroups (strata) sharing the same characteristics (such as gender or age bracket), then we draw a sample from each stratum.
How? a) divide the police officers in Sacramento into male and female group
b) select a random sample of each and collect data regarding the years in service.
4. Cluster: Divide the population into sections (or clusters), and then randomly select some of those clusters, then choose all the members from those selected clusters.
How? To see the customer feedback to a new menu
a) divide Sacramento in different zones,
b) randomly select some of those zones
c) collect data from all fast-food branches in those selected zones.
5.Convinence: Use the results are readily available.

How? A math instructor asks some of his students if they use student solution manual to do their homework.
Extra Practice: Answer questions C on page 1 of practice problem part 1
Section 1 Topics review 08/24/2020

Qualitative Data

Example 1.

Grade	$f=$ Students	Rel. freq \% $\frac{f}{n} \times 100$	Angles
\mathbf{A}	$\mathbf{6}$	$(6 / 50) \times 100=\mathbf{1 2}$	
\mathbf{B}	$\mathbf{1 0}$	$(10 / 50) \times 100=\mathbf{2 0}$	$.12 \times 360=\mathbf{4 3 . 2}^{\circ}$
\mathbf{C}	$\mathbf{1 6}$	$(16 / 50) \times 100=\mathbf{3 2}$	$.20 \times 360=\mathbf{7 2}^{\circ}$
\mathbf{D}	$\mathbf{1 4}$	$(14 / 50) \times 100=\mathbf{2 8}$	$.32 \times 360=\mathbf{1 1 5 . 2}^{\circ}$
\mathbf{F}	$\mathbf{4}$	$(4 / 50) \times 100=\mathbf{8}$	$.28 \times 360=\mathbf{1 0 0 . 8}^{\circ}$
	$n=\sum f=50$	$100 ?$	$.8 \times 360=\mathbf{2 8 . 8}^{\circ}$
		+	

Using Excel to graph the followings

Practice 1:

Complete the table and draw the bar chart and the pie chart.(You can use Microsoft Excel to do the graphs)

Grade	$f=$ Students	Rel. freq \% $\frac{f}{n} \times 100$	Angles 360° (Rel. freq)
A	$\mathbf{2 2}$		
B	$\mathbf{2 6}$		
\mathbf{C}	$\mathbf{2 0}$		
D	$\mathbf{8}$		
F	$\mathbf{4}$	$100 ?$	
	$n=\sum f=$		

Descriptive Statistics

A) Measure of Central Tendency (Mean, Median, Mode)

Mean $(\mu, \bar{x}) \quad x=$ data $\quad \sum=$ Sum \quad N or $\mathrm{n}=$ Number of data points
Data: 5, 6, 3, 9, 7

$$
\bar{x}=\frac{\sum x}{n}=\frac{5+6+3+9+7}{5}=\frac{30}{5}=6
$$

Median: The middle data point in a ranked (largest to smallest or smallest to largest) data, or The median cuts the ranked data in half one half below it and one half above it.

Example1: Suppose the median score for the first test was 73, it simply means half the class got below 73 and the other half above it. Examples for odd and even numbered of data.
$2,5,11,16,8,9,3,7,5 \quad$ Ranked $2,3,5,5,7,8,9,11,16, \quad$ Median $=7$
$2,3,5,5,7,8,9,11,16,4$ Ranked $2,3,4,5,5,7,8,9,11,16, \operatorname{Median}=(5+7) / 2=6$ Hint: If there are extreme values in data set (too large or too low with respect of the rest of data) then median is a better than mean to identify the measure of central tendency.

Mode: The data value(s) with the highest occurrence, bimodal, multimodal
2, 8, 11, 7, 8, $13 \quad$ Mode $=8$
3, 12, 5, 14, 9, 12, 7, 16, $7 \quad$ Bimodal $=7,12$
11, 15, 7, 2, 6, 16, 15, 3, 2, 11, 19, 5, $4 \quad$ Multimodal $=2,11,15$
B) Measure of Positions (Quartiles, Box-Plot, Percentile, Z-score)

Quartiles: Breaking the ranked data in 3 quartiles (Q1, Q2, Q3)
Data: \qquad 25\% \qquad 25\% \qquad Q3 \qquad 25\% \qquad
How to find quartiles? 3 steps
Rank the data, Find $\mathbf{Q 2}=$ Median, \quad Find the new medians $\mathbf{Q 1}, \mathbf{Q 3}$ on either side of Q2.
Example 1: Odd number of data Data: 2, 5, 11, 16, 8, 9, 3, 7, 5, 4, 13

Example 2: Even number of data Data: 2, 3, 5, 5, 7, 8, 9, 11, 16, 4

$$
\text { Ranked Data } 2,3,4,5,5,7,8, \mathbf{9}, 11,16, \quad \mathbf{Q} 2=\text { Median }=(5+7) / 2=6
$$ Q1 $\quad \mathbf{Q 2}=6 \quad$ Q3

TI-83/84 Inputting data in L1 (stat \rightarrow Option $1 \rightarrow$ enter)
then \quad stat \rightarrow calc \rightarrow Option $1 \rightarrow$ enter $\rightarrow 2 n d \rightarrow 1 \rightarrow$ enter

Box-Plot: is mainly used for ungrouped data to show how the data are distributed by showing center, spread, and skewness. Center is the Q2, Spread is how wide the box is, Skewness explains the distribution of the data by using the longer tail to describe the Skewness (for example if the longer tail is on the right, it is called skewed to the right)

To construct a boxplot

1. Find the 5 -number summery of the data that are Min, Q1, Q2, Q3, Max
2. Plot these points on a scaled number line.
3. Construct a box by using Q1, Q2, Q3

There are many possibilities of where the box in box-plot may be located.
If the box in box-plot is located to the far Left, it suggests that distribution of data are skewed to the Right

Skewed to the Right

If the box in box-plot is located to the Center, it suggests that distribution of data are Centered.

Centered

If the box in box-plot is located to the far Right, it suggests that distribution of data are skewed to the Left

Skewed to the Left
Min Q1 Q2 Q3 Max
To see how to do Box-Plot by TI, look at the Youtube links on class website.

Extra Practice: Answer questions on columns A-G on page 3 of practice problem part 1
TI-83/84 Inputting data in L1 (stat \rightarrow Option $1 \rightarrow$ enter)
then stat \rightarrow calc \rightarrow Option $1 \rightarrow$ enter $\rightarrow 2$ nd $\rightarrow 1 \rightarrow$ enter
Extra Practice: Answer questions on columns $A-G$ on page 3 of practice problem part 1

TI-83/84

Find the mean, median, Q1, Q3 and standard deviation for 5, 6, 3, 9, 10, 3, and also draw the Box_Plot.

Inputting data in L1 (stat \rightarrow Option $1 \rightarrow$ enter)

L1	LE	L3	1
5		------	
5			
9			
10			
L107			

$2 n d \rightarrow 1$

Doing the Box Plot by TI

Inputting data in L1

Press ZOOM 9

2nd STAT Plots

Result

Relation Between the Mean, Median, and Distribution Shape

Distribution Shape	Mean versus Median
Skewed left	Mean substantially smaller than median
Symmetric	Mean roughly equal to median
Skewed right	Mean substantially larger than median

(a) Skewed Left Mean $<$ Median

Mean $=$ Median (b) Symmetric

Mean $=$ Median

(c) Skewed Right Mean $>$ Median

The dot-plot above shows how many students spending how many hours in homework.

Construction of a Stem-and-Leaf Plot

Step 1: The stem of a data value will consist of the digits to the left of the right-most digit. The leaf of a data value will be the rightmost digit.
Step 2: Write the stems in a vertical column in increasing order. Draw a vertical line to the right of the stems.
Step 3: Write each leaf corresponding to the stems to the right of the vertical line.
Step 4: Within each stem, rearrange the leaves in ascending order, title the plot, and provide a legend to indicate what the values represent.

$$
15,16,21,23,23,26,26,30,32,41
$$

Class A
Leaves
Stems

8	0	6	0	0							
5	0	7	0	1	3	3	5	6	7		
6	4	8	4	5	6						
1	0	9	1	2							
0	0	10									

The above stem and leaves plot is used to show the difference in scores between the two classes.

Pareto Chart: It shows which factors are the major and minor causes for arriving late.

Grouped Data (Freq. Table)

The table below shows the quiz scores of 50 students that are given in group.

Quiz Score	Freq $(f)=$ Students			
$0-4$	6			
$4-8$	10			
$8-12$	16			
$12-16$	14			
$16-20$	4			

Use the quiz scores on x-axis, frequency on the Y-axis to draw blocks for a shape that is called Histogram

Histogram looks close to a Centered or bell-shaped distribution.
Different possible shapes of Histogram

Mean and Standard Deviation.

First step is to create a new column called midpoint (average of scores in each group). For example, for $0-4$, the midpoint will be 2 , for $4-8$, the midpoint will be 6 . Next step is to open two new columns $f \times m$ and $f \times m^{2}$ do the necessary calculations, find the summation for each and then use them in the given formulas.

X-axis		midpoint	Mean	
Quiz Scores	Freq(f)=Students	m	$f \times m$	
$0-4$	6	2	60	
$4-8$	10	6	160	
$8-12$	16	10	72	
$12-16$	14	14	18	
$16-20$	4		$\sum f \times m=500$	
	$\sum f=n=50$			

Mean: $\bar{X}=\frac{\sum f \times m}{n}=\frac{500}{50}=10$

TI-83/84

Select stat option 1

Input midpoints in L1 and frequency in L2

Practice 1: Use both formula and the Ti to find the mean, standard deviation, and the variance.

Quiz Scores	Freq (f)	m	$f \times m$	
$0-10$	8		180	
$10-20$	12	25		
$20-30$	14			
$30-40$	6		$\sum f \times m=780$	

Mean: $\bar{X}=\frac{\sum f \times m}{n}=\square=19.5$

Practice 2: Use both formula and the Ti to find the mean, standard deviation and the variance

Test Scores	Freq $(f)=$	m	$f \times m$	
$0-20$	2			
$40-40$	8			
$60-80$	14			
$80-100$	24		$\sum f \times m=$	

Mean: $\bar{X}=\frac{\sum f \times m}{n}=\square=67$
Extra Practice: Answer questions A, B, C, D on pages 5, 6 of practice problem part 1

