Descriptive Statistics 6
Grouped Data (Freq. Table)/ Histogram 9
Grouped Data (Freq. Table) Mean/St. Dev 11

Descriptive Statistics

B) Measure of Positions (Quartiles, Box-Plot, Percentile, Z-score)

Quartiles: Breaking the ranked data in 3 quartiles (Q1, Q2, Q3)
Data: \qquad $25 \% \quad$ Q1 \qquad 25\% \qquad 25\% \qquad Q3 \qquad 25\% \qquad
How to find quartiles? 3 steps
Rank the data points, Find $\mathbf{Q 2}=$ Median and the new medians $\mathbf{Q 1}, \mathbf{Q 3}$ on either side of Q2.
Example 1: Odd number of data Data: 2, 5, 11, 16, 8, 9, 3, 7, 5, 4, 13

$$
\text { Ranked Data: } 2,3,, 4,5,5,7,8,9,11,13,16,
$$ Q1 Q2 Q3

Example 2: Even number of data points Data: 2, 3, 5, 5, 7, 8, 9, 11, 16, 4

$$
\text { Ranked Data } 2,3, \mathbf{4}, 5,5,7,8, \mathbf{9}, 11,16, \quad \mathbf{Q} \mathbf{2}=\text { Median }=(5+7) / 2=6
$$

$$
\text { Q1 } \quad \mathbf{Q} 2=6 \quad \text { Q3 }
$$

$$
\begin{array}{ll}
\text { TI-83/84 } & \text { Inputting data in } \boldsymbol{L} 1(\text { stat } \rightarrow \text { Option } 1 \rightarrow \text { enter }) \\
& \text { then } \quad \text { stat } \rightarrow \text { calc } \rightarrow \text { Option } 1 \rightarrow \text { enter } \rightarrow 2 n d \rightarrow 1 \rightarrow \text { enter }
\end{array}
$$

Extra Practice: Answer questions on columns A-G on page $\mathbf{3}$ of practice problem part 1

C) Measure of Variation (Range, Standard Deviation, Variance)

Range: It shows how far apart the data points are? Range = the highest value - the smallest value
Standard Deviation (σ, s) : It measures the average dispersion of data around the mean.

Example: Consider the 3 random delivery time (in days) taken by 2 different companies A , and B

	\mathbf{A}	\mathbf{B}
Mean	5	5
Median	5	5
Mode	5	none

At first it seems there are not that much of difference between the delivery times of these two companies but let's look at their actual data and their plots on Dot-Plot.

	A	B		A	Dot Plot		B	
Delivery time	5	5		X				
Delivery time	5	0		X				
Delivery time	5	10		x		x	x	x
			0	5		0	5	10

Now, it seems that there is no dispersion for company A, but an average dispersion of $\mathbf{5}$ for company B, suggesting that company is more reliable meeting the average delivery time.

The formula for the Standard Deviation or average dispersion of data around mean $s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$

Company A

\mathbf{x}	\bar{x}	$(x-\bar{x})$	$(x-\bar{x})^{2}$
5	5	0	0
5	5	0	0
5	5	0	0
			$\sum(x-\bar{x})^{2}=0$

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{0}{3-1}}=\sqrt{0}=0
$$

Company B

\mathbf{x}	\bar{x}	$(x-\bar{x})$	$(x-\bar{x})^{2}$
5	5	0	0
0	5	-5	25
10	5	5	25
			$\sum(x-\bar{x})^{2}=50$

$$
s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{50}{3-1}}=\sqrt{25}=5
$$

Find the mean and standard deviation for $5,6,3,9,10,3$, and also draw the dot-plot.

x	$\bar{x}=\frac{\sum x}{n}=\frac{36}{6}=6$	$(x-\bar{x})$	$(x-\bar{x})^{2}$
5	6	-1	1
6	6	0	0
3	6	-3	9
9	6	3	9
10	6	4	16
3	6	-3	9
$\sum x=$			$\sum(x-\bar{x})^{2}=44$

$s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{44}{6-1}}=\sqrt{8.8}=2.962 .97 \quad \quad$ Variance $=s^{2}=8.8$
Variance (σ^{2}, s^{2}): Variance is the square of standard deviation.
TI-83/84 Inputting data in L1 (stat \rightarrow Option $1 \rightarrow$ enter)
then stat \rightarrow calc \rightarrow Option $1 \rightarrow$ enter $\rightarrow 2 n d \rightarrow 1 \rightarrow$ enter
Rule of thumb to estimate $\mathbf{s}: s=\frac{\text { Range }}{4} \quad$ Generally the larger the data set the closer the estimate will be to the exact value.

Extra Practice: Answer questions on columns A-G on page 3 of practice problem part 1

TI-83/84

Find the mean, median, Q1, Q3 and standard deviation for 5, 6, 3, 9, 10, 3, and also draw the Box-Plot.

Inputting data in L1 (stat \rightarrow Option $1 \rightarrow$ enter) \quad stat \rightarrow calc \rightarrow Option $1 \rightarrow$ enter

$2 n d \rightarrow 1 \quad$ enter
Results
Use down arrow for more Results
1-War Stat.s Li■

Doing the Box Plot by TI

Inputting data in L1

Press ZOOM 9

2nd STAT Plots

Result

Empirical Rules: If and only if the box-plot or histogram is centered then we can apply the three following empirical rules.
$99.7 \%=\bar{x} \pm 3 S$
$\mathbf{9 9 . 7} \%$ of data are within $3 S$ of the mean (\bar{x})
$95 \%=\bar{x} \pm 2 S$
$68 \%=\bar{x} \pm S$
$\mathbf{9 5 \%}$ of data are within $2 S$ of the mean (\bar{x})
68% of data are within $1 S$ of the mean (\bar{x})

Example: Find all three empirical rules for Abe Stat class if the average was 72 and the standard deviation was 8, assuming that Box-plot was centered.

$99.7 \%=72 \pm 3(8)=72 \pm 24$	$48<\mathbf{9 9 . 7} \%$ of class got scores <96
$95 \%=72 \pm 2(8)=72 \pm 16$	$56<\mathbf{9 5} \%$ of class got scores <88
$68 \%=72 \pm 1(8)=72 \pm 8$	$64<\mathbf{6 8} \%$ of class got scores <80

Grouped Data (Freq. Table)

The table below shows the quiz scores of 50 students that are given in group.

Quiz Score	Freq $(f)=$ Students			
$0-4$	6			
$4-8$	10			
$8-12$	16			
$12-16$	14			
$16-20$	4			

Use the quiz scores on x -axis, frequency on the Y -axis to draw blocks for a shape that is called Histogram

Histogram looks close to a Centered or bell-shaped distribution.
Different possible shapes of Histogram

Mean and Standard Deviation.

First step is to create a new column called midpoint (average of scores in each group). For example for $0-4$, the midpoint will be 2 , for $4-8$, the midpoint will be 6 . Next step is to open two new columns $f \times m$ and $f \times m^{2}$ do the necessary calculations, find the summation for each and then use them in the given formulas.

X-axis		midpoint	Mean	St.Dev.
Quiz Scores	Freq(f) = Students	m	$f \times m$	$f \times m^{2}$
$\begin{gathered} \hline 0-4 \\ 4-8 \\ 8-12 \\ 12-16 \\ 16-20 \end{gathered}$	$\begin{gathered} \hline 6 \\ 10 \\ 16 \\ 14 \\ 4 \end{gathered}$	$\begin{aligned} (0+4) / 2 & =2 \\ (4+8) / 2 & =6 \\ (8+12) / 2 & =10 \\ (12+16) / 2 & =14 \\ (16+20) / 2 & =18 \end{aligned}$	$\begin{aligned} 6 \times 2 & =12 \\ 10 \times 6 & =60 \\ 16 \times 10 & =160 \\ 14 \times 14 & =196 \\ 4 \times 18 & =72 \end{aligned}$	$\begin{aligned} 6 \times 2^{2} & =24 \\ 10 \times 6^{2} & =360 \\ 16 \times 10^{2} & =1600 \\ 14 \times 14^{2} & =2744 \\ 4 \times 18^{2} & =1296 \end{aligned}$
	$\sum f=n=50$		$\times m=500$	$\sum f \times m^{2}=6024$
Mean: $\bar{X}=\frac{\sum f \times m}{n}=\frac{500}{50} \stackrel{\leftarrow}{=}$ Standard deviation: $s=\sqrt{\frac{n \sum f \times m^{2}-\left(\sum f \times m\right)^{2}}{n(n-1)}}=\sqrt{\frac{50(6024)-(500)^{2}}{50(50-1)}}=\sqrt{\frac{51200}{2450}}=4.57$				

Variance: $S^{2}=4.57^{2}=20.9$
Apply 95% empirical rule: $95 \%=\bar{x} \pm 2 S=10 \pm 2(4.57)=10 \pm 9.14 \quad 0.86<\mathbf{9 5} . \%$ of class got scores <19.14
TI-83/84
Select stat option 1

Input midpoints in L1 and frequency in L2

Practice 1: Use both formula and the Ti to find the mean, standard deviation and the variance.

Quiz Scores	Freq(f)	m	$f \times m$	$f \times m^{2}$
0-10	8	5	40	200
10-20	12		180	
20-30	14	25		
$30-40$	6			7350
	$\sum f=n=40$		$\sum f \times m=780$	$\sum f \times m^{2}=19000$
Mean: $\bar{X}=\frac{\sum f \times m}{n}=$				

Standard deviation: $S=\sqrt{\frac{n \sum \times m^{2}-\left(\sum f \times m\right)^{2}}{n(n-1)}}=\sqrt{\square}=\sqrt{\frac{\square}{2}}=96$
Variance: $S^{2}=9.8^{2}=97.18$

Apply 95\% empirical rule:
Practice 2: Use both formula and the Ti to find the mean, standard deviation and the variance

Test Scores	Freq $(f)=$	m	$f \times m$	$f \times m^{2}$
$0-20$	2	10	20	200
$20-40$	8	30	$8 \times 30=240$	$8 \times 30^{2}=7200$
$40-60$	14			
$60-80$	32		$\sum f \times m=$	$\sum f \times m^{2}=$
$80-100$	$\sum f=n=$			

Mean: $\bar{X}=\frac{\sum f \times m}{n}=$ \qquad

Standard deviation: $S=\sqrt{\frac{n \sum f \times m^{2}-\left(\sum f \times m\right)^{2}}{n(n-1)}}=\sqrt{\square}=\sqrt{\frac{\square}{}}=20.89$

Variance: $S^{2}=$
Apply 68\% empirical rule:

