Part I (Section 2) Topics				Page	Statistics
Descriptive Sta	atistics		•••••	6	
Grouped Data	(Freq. Table	e)/ Histograı	n	9	
Grouped Data	(Freq. Table	e) Mean/St. I	Dev	11	
	Descript	ive Statistics	8		
B) Measure of Positions (Quartiles, B	ox-Plot, Perc	entile, Z-sco	ore)		
Quartiles: Breaking the ranked data in	3 quartiles (Q1, Q2, Q3))		
Data:25%Q1	25%	Q2	25%	_Q3	25%
How to find quartiles? 3 steps Rank the data points, Find $Q2 =$ Median	and the new r	nedians Q1, (Q3 on either sid	de of Q2.	
Example 1: Odd number of data Data:	2, 5, 11, 1	6, 8, 9, 3,	7, 5, 4, 13		
Ranked Data:	2, 3, , 4 , 5, Q1	5, 7, 8, 9, Q2	11 , 13, 16, Q3		
Example 2: Even number of data points Ranked Data	a 2, 3, 4, 5		9, 11, 16,		dian = $(5+7)/2 = 6$
TI-83/84 Inputting data in L1 (stat \rightarrow then stat \rightarrow calc \rightarrow Optio	1	,	$1 \rightarrow enter$		

Extra Practice: Answer questions on columns A-G on page 3 of practice problem part 1

C) Measure of Variation (Range, Standard Deviation, Variance)

Range: It shows how far apart the data points are? Range = the highest value - the smallest value

Standard Deviation (σ , s): It measures the average dispersion of data around the mean.

Example: Consider the 3 random delivery time (in days) taken by 2 different companies A, and B

	Α	В
Mean	5	5
Median	5	5
Mode	5	none

At first it seems there are not that much of difference between the delivery times of these two companies but let's look at their actual data and their plots on Dot-Plot.

	Α	В		Α	Dot Plot]	B	
Delivery time	5	5		Х				
Delivery time	5	0		Х				
Delivery time	5	10		Х		X	X	Х
			0	5	10	0	5	10

Now, it seems that there is **no dispersion** for company A, but an **average dispersion of 5** for company B, suggesting that company is more reliable meeting the average delivery time.

Company B

The formula for the Standard Deviation or average dispersion of data around mean $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}}$

Company A

X	\overline{x}	$(x-\overline{x})$	$(x-\overline{x})^2$
5	5	0	0
5	5	0	0
5	5	0	0
			$\sum \left(x - \overline{x}\right)^2 = 0$

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{0}{3 - 1}} = \sqrt{0} = 0$$

X	\overline{x}	$(x-\overline{x})$	$(x-\overline{x})^2$
5	5	0	0
0	5	-5	25
10	5	5	25
			$\sum \left(x - \overline{x}\right)^2 = 50$

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{50}{3 - 1}} = \sqrt{25} = 5$$

Find the mean and standard deviation for 5, 6, 3, 9, 10, 3, and also draw the dot-plot.

x	$\overline{x} = \frac{\sum x}{n} = \frac{36}{6} = 6$	$(x-\overline{x})$	$(x-\overline{x})^2$
5	6	-1	1
6	6	0	0
3	6	-3	9
9	6	3	9
10	6	4	16
3	6	-3	9
$\sum x =$			$\sum (x - \overline{x})^2 = 44$

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{44}{6 - 1}} = \sqrt{8.8} = 2.96 \ 2.97$$
 Variance $s^2 = 8.8$

Variance (σ^2, s^2) : Variance is the square of standard deviation. **TI-83/84** Inputting data in L1 (stat \rightarrow Option $1 \rightarrow$ enter) then stat \rightarrow calc \rightarrow Option $1 \rightarrow$ enter $\rightarrow 2n d \rightarrow 1 \rightarrow$ enter

Rule of thumb to estimate s: $S = \frac{Range}{4}$ Generally the larger the data set the closer the estimate will be to the exact value.

Extra Practice: Answer questions on columns A-G on page 3 of practice problem part 1

Part 1(Section 2) Lecture Note 2 09/09/2020

TI-83/84

Find the mean, median, Q1, Q3 and standard deviation for 5, 6, 3, 9, 10, 3, and also draw the Box-Plot.

Inputting data in L1 (stat \rightarrow Option $1 \rightarrow$ enter) stat \rightarrow calc \rightarrow Option $1 \rightarrow$ enter

Results

 $2n d \rightarrow 1$ enter

Use down arrow for more Results

Doing the Box Plot by TI

Inputting data in L1

2nd STAT Plots

Choose the fifth option

Press ZOOM 9

Empirical Rules: If and only if the **box-plot or histogram is centered** then we can apply the **three** following empirical rules.

$99.7\% = \overline{x} \pm 3 S$	99.7 % of data are within $3s$ of the mean (\bar{x})
$95\% = \overline{x} \pm 2 \ s$	95 % of data are within $2 s$ of the mean (\overline{x})
$68\% = \overline{x} \pm s$	68 % of data are within 1 <i>s</i> of the mean (\bar{x})

Example: Find all three empirical rules for Abe Stat class if the average was 72 and the standard deviation was 8, assuming that Box-plot was centered.

$99.7\% = 72 \pm 3(8) = 72 \pm 24$	48 < 99.7 % of class got scores < 96
$95\% = 72 \pm 2(8) = 72 \pm 16$	56 < 95 % of class got scores < 88
$68\% = 72 \pm 1(8) = 72 \pm 8$	64 < 68 % of class got scores < 80

Grouped Data (Freq. Table)

	1	
Quiz Score	Freq (f) = Students	
0 - 4	6	
4 - 8	10	
8 - 12	16	
8 - 12 12 - 16	14	
16 - 20	4	

The table below shows the quiz scores of 50 students that are given in group.

Use the quiz scores on x-axis, frequency on the Y-axis to draw blocks for a shape that is called Histogram

Histogram looks close to a Centered or bell-shaped distribution. Different possible shapes of Histogram

Mean and Standard Deviation.

First step is to create a new column called **midpoint** (average of scores in each group). For example for 0 - 4, the midpoint will be 2, for 4 - 8, the midpoint will be 6. Next step is to open two new columns $f \times m$ and $f \times m^2$ do the necessary calculations, find the summation for each and then use them in the given formulas.

X-axis		midpoint	Mean	St.Dev.		
Quiz Scores	Freq(f)= Students	m	$f \times m$	$f \times m^2$		
0-4 4-8 8-12 12-16 16-20	6 10 16 14 4	(0+4) / 2 = 2 (4+8) / 2 = 6 (8+12) / 2 = 10 (12+16) / 2 = 14 (16+20) / 2 = 18	$6 \times 2 = 12 10 \times 6 = 60 16 \times 10 = 160 14 \times 14 = 196 4 \times 18 = 72$	$6 \times 2^{2} = 24$ $10 \times 6^{2} = 360$ $16 \times 10^{2} = 1600$ $14 \times 14^{2} = 2744$ $4 \times 18^{2} = 1296$		
	$\sum f = n = 50$		$\sum f \times m = 500$	$\sum f \times m^2 = 6024$		
Mean: $\overline{X} = \frac{\sum f \times m}{n} = \frac{500}{50} = 10$						
Standard deviation: $S = \sqrt{\frac{n \sum f \times m^2 - (\sum f \times m)^2}{n(n-1)}} = \sqrt{\frac{50(6024) - (500)^2}{50(50-1)}} = \sqrt{\frac{51200}{2450}} = 4.57$						

Variance: $s^2 = 4.57^2 = 20.9$ Apply 95% empirical rule: $95\% = \overline{x} \pm 2 \ s = 10 \pm 2(4.57) = 10 \pm 9.14$ 0.86 < 95. % of class got scores <19.14

TI-83/84

Practice 1: Use both formula and the Ti to find the mean, standard deviation and the variance.

Quiz Scores	Freq(f)	m	$f \times m$	$f \times m^2$
$ \begin{array}{r} 0 - 10 \\ 10 - 20 \\ 20 - 30 \end{array} $	8 12 14	5 25	40 180	200
20 - 30 30 - 40	6	23		7350
	$\sum f = n = 40$		$\sum f \times m = 780$	$\sum f \times m^2 = 19000$

Mean:
$$\overline{X} = \frac{\sum f \times m}{n} = \frac{19.5}{n}$$

Standard deviation:
$$S = \sqrt{\frac{n \sum f \times m^2 - \left(\sum f \times m\right)^2}{n(n-1)}} = \sqrt{\frac{n \sum f \times m^2 - \left(\sum f \times m\right)^2}{n(n-1)}} = \sqrt{\frac{n \sum f \times m^2 - \left(\sum f \times m\right)^2}{n(n-1)}} = 9.86$$

Variance: $S^2 = 9.8^2 = 97.18$

Apply 95% empirical rule:

Practice 2: Use both formula and the Ti to find the mean, standard deviation and the variance

Test Scores	Freq (<i>f</i>)=	m	$f \times m$	$f \times m^2$
0-20	2	10	20	200
20 - 40	8	30	$8 \times 30 = 240$	$8 \times 30^2 = 7200$
40 - 60	14			
60 - 80	32			
80 - 100	24			
	$\sum f = n =$		$\sum f \times m =$	$\sum f \times m^2 =$

Mean:
$$\overline{X} = \frac{\sum f \times m}{n} = ----= 67$$

Standard deviation:
$$S = \sqrt{\frac{n\sum f \times m^2 - (\sum f \times m)^2}{n(n-1)}} = \sqrt{\frac{n}{n(n-1)}} = \sqrt{\frac{n}{n(n-1)}} = 20.89$$

Variance: $S^2 =$ Apply 68% empirical rule: