Part 1 (Section 3)

Regression and Correlation

Statistics

It is to explore and study of the **relationship** between **two variables** (x, y) with the objective of formulating an equation between the two variables and using that equation to predict one from the other. $(x ext{ is also called independent, explanatory, or predictor variable})$

(y is also called dependent, response variable). So, a response variable is the variable whose value can be explained by the predictor variable.

Steps

1. To find the **nature of the relationship** (Linear or non-linear, positive, or negative relationship or no relationship) by doing a scatter diagram, y versus x

- 2. To measure the strength of this relationship by computing the correlation coefficient = r
- 3. Finding slope and y-intercept for equation of the best fitted-line (regression equation = y = ax + b) between x, y variables.
- 4. Using the regression equation to **estimate or predict** one variable from the other.

Nature of relationship:

Positive: Both variables either increasing or decreasing $x \uparrow \uparrow y$ or $x \downarrow \downarrow y$ Negative: When one variable increases the other one decreases or vice versa. $x \uparrow \downarrow y$ or $x \downarrow \uparrow y$

	<i>x</i>	<i>y</i>	Nature of relationship		
	Independent, Explanatory, or Predictor variable	Dependent, or response variable	Positive, Negative		
1	Hours of study per week for stat class	Stat test score	+ , - , None		
2	Mortgage rate	Number of loans refinanced	+ , - , None		
3	Average height of the parents	Height of the sons or daughters	+, -, None		
4	No. of absences in a semester for stat class	Stat test scores	+, -, None		
5	Daily temperature in summer	Water or electric consumption	+, -, None		
6	\$ amount spent on advertisement	Monthly sales	+, -, None		
7	Fat consumption	Cholesterol level	+, -, None		
8	Number of years of education	Monthly salary	+, -, None		
9	Number of hours watching TV/week	GPA	+, -, None		
10	Ice cream sales	Number of drownings	+, -, None		
1) + 2) - 3) + 4) - 5) + 6) + 7) + 8) + 9 none 10 none (Lurking variable)					

What do you think is the nature of relationship between x and y variables?

Answers at the bottom

Steps to do a Correlation and Regression problem

1. Constructing a Scatter diagram and comment on its nature (linear or non-linear, positive or negative, strong or weak relationship).

Why do we need a scatter diagram?

100

80

- a) To see if data exhibit a linear pattern or not
- b) To see if linear pattern is **positive or negative**
- c) To see how closely (strongly or perfectly) data are clustered around the a straight line.
- d) To detect any **outlier** (a point that is lying far away from the other data points).

r = 1**Perfect Positive Linear Correlation**

• Y

Test Scores vs Hours Study

Perfect Negative Linear Correlation

Strong Positive Linear Correlation

Positive Linear Correlation

No Correlation

Strong Negative Linear Correlation

Negative Linear Correlation

Non linear relationship

Very important: If pattern of data is not linear (looks like a curve) or it has an outlier, or it show no pattern then linear regression method is not valid and not applicable.

2 Computing r = Correlation Coefficient (the measurement of strength of relationship between 2 variables) by formula given by $r = \frac{n \sum xy - \sum x \sum y}{\sqrt{n \sum x^2 - (\sum x)^2} \sqrt{n \sum y^2 - (\sum y)^2}} =$ or using Ti calculator and comment on its

strength. The value of r is always between $-1 \le r \le 1$

3. Computing $\overline{x}, \overline{y}, S_x, S_y$,

4. Using the formula or TI calculator to computing Slope (a) and y-intercepts (b) for the regression equation y = a x + b by formula $Slope = a = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$ and $y - itc = b = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$

5. Using a, b and inputting them into regression equation y = a x + b, then use this equation to estimate or predict one variable from the other. Estimated values are labeled as y' (y -prime) and x' (x -prime).

Guideline for using the regression line:

1. If there is no significant linear correlation, do not use the regression equation.

2. When using the regression equation for prediction, stay within the range of the available sample data.

3. A Regression equation based on old data is not necessarily valid now.

Marginal Change (Slope): in a variable is the amount that it changes in y-variable when the x-variable increases by one unit.

Outlier: is a point that is lying far away from the other data points.

Part 1 (Section 3) Topics Review 09/20/2020

Is	there a	relationsh	ip between	hours of	'study an	d test scores?

	x = Hours Study/week	y = Test Score	x^2	y^2	x y
1	5	72	25	5184	360
2	10	88	100	7764	880
3	13	92	169	8464	1196
4	8	80	64	6400	640
	$\Sigma x = 36$	$\Sigma y = 332$	$\Sigma x^2 = 358$	$\Sigma y^2 = 27792$	$\Sigma xy = 3076$

1. Use the data and plot the data as a scatter diagram and <u>comment</u> on the pattern of the points.

2. Compute the correlation coefficient and comment on that: a very strong positive linear correlation.

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{n\sum x^2 - (\sum x)^2} \sqrt{n\sum y^2 - (\sum y)^2}} = \frac{(4)(3076) - (36)(332)}{\sqrt{4(358) - (36)^2} \sqrt{4(27792) - (332)^2}} = \frac{12304 - 11952}{\sqrt{136} \sqrt{944}} = \frac{352}{358.307} = 0.9824$$

3. Compute the slope and y-intercept and write the equation of regression line.

$$Slope = a = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^{2}) - (\sum x)^{2}} = \frac{4(3076) - (36)(332)}{4(358) - (36)^{2}} = \frac{12304 - 11952}{1432 - 1296} = \frac{352}{136} = 2.588 = 2.59$$
$$y - itc = b = \frac{(\sum y)(\sum x^{2}) - (\sum x)(\sum xy)}{n(\sum x^{2}) - (\sum x)^{2}} = \frac{(332)(358) - (36)(3076)}{4(358) - (36)^{2}} = \frac{118856 - 110736}{1432 - 1296} = \frac{8120}{136} = 59.71$$
$$y = a x + b = 2.59 x + 59.71$$

4. Explain the slope based on the regression equation and the in relation of x and y variables.

In general for every additional hour of study per week the score goes up by 2.59 points.

5. Compute average and standard deviation for both x and y variables.

$$\overline{x} = 36/4 = 9$$
 hrs $S_x = 3.37$ $\overline{y} = 332/4 = 83$ $S_y = 8.87$

- 6. If one student studies 10 hours a week, use **Reg. Equ.** to estimate her test score. x = 10 hrs, y' = 85.61x = 10 hrs, y' = 85.61
- 7. If one student has test score of 90, use **Reg. Equ.** to estimate number of hours he spends studying per week. and if y = 90, x' = 11.69 hrs

TI-83/84

	x = Hours Study/week	y = Test Score	<i>x</i> ²	y^2	x y
1	5	72			
2	10	88			
3	13	92			
4	8	80			
5	6	77			
6	4	64			
	$\sum x = 46$	$\sum y = 473$	$\sum x^2 = 410$	$\sum y^2 = 37817$	$\sum x y = 3794$

1. Use the data and plot the data as a scatter diagram and <u>comment</u> on the pattern of the points.

Comment: A very strong positive linear correlation.

- 2. Compute the correlation coefficient and <u>comment</u> on that r = 0.963 Very strong...?
- 3. Compute the slope and y-intercept and write the equation of regression line. Slope = a = 2.92, y-itc = b = 56.41

$$y = a x + b = 2.92 x + 56.41$$

- 4. Explain the slope based on the regression equation and the in relation of x and y variables. In general for every additional hour of study per week the score goes up by 2.92 points.
- 5. Compute average and standard deviation for both x and y variables. $\overline{x} = 7.67$, $\overline{y} = 78.83$, $S_x = 3.386$, $S_y = 10.28$
- 6. If one student studies 6 hours a week, use **Reg. Equ.** to estimate her test score. x = 6, y' = 73.93
- 7. If one student has test score of 85, use **Reg. Equ.** to estimate number of hours he spends studying per week. y = 85, x' = 9.79