It is to explore and study of the relationship between two variables $(\boldsymbol{x}, \boldsymbol{y})$ with the objective of formulating an equation between the two variables and using that equation to predict one from the other. (\boldsymbol{x} is also called independent, explanatory, or predictor variable)
(\boldsymbol{y} is also called dependent, response variable). So, a response variable is the variable whose value can be explained by the predictor variable.

Steps

1. To find the nature of the relationship (Linear or non-linear, positive, or negative relationship or no relationship) by doing a scatter diagram, \boldsymbol{y} versus \boldsymbol{x}
2. To measure the strength of this relationship by computing the correlation coefficient $=r$
3. Finding slope and \mathbf{y}-intercept for equation of the best fitted- line (regression equation $=y=a x+b$) between $\boldsymbol{x}, \boldsymbol{y}$ variables.
4. Using the regression equation to estimate or predict one variable from the other.

Nature of relationship:

Positive: Both variables either increasing or decreasing $x \uparrow \uparrow y$ or $x \downarrow \downarrow y$
Negative: When one variable increases the other one decreases or vice versa. $x \uparrow \downarrow y$ or $x \downarrow \uparrow y$
What do you think is the nature of relationship between \boldsymbol{x} and \boldsymbol{y} variables? Answers at the bottom

	Independent, Explanatory, or Predictor variable	y Dependent, or response variable	Nature of relationship Positive, Negative
1	Hours of study per week for stat class	Stat test score	+ , - , None
2	Mortgage rate	Number of loans refinanced	+ , - None
3	Average height of the parents	Height of the sons or daughters	+, -, None
4	No. of absences in a semester for stat class	Stat test scores	+, -, None
5	Daily temperature in summer	Water or electric consumption	+, - , None
6	\$ amount spent on advertisement	Monthly sales	+, - , None
7	Fat consumption	Cholesterol level	+, -, None
8	Number of years of education	Monthly salary	+, -, None
9	Number of hours watching TV/week	GPA	+, - , None
10	Ice cream sales	Number of drownings	+, - , None

1) + 2) -
1) +
2) -
3) +
4) +
5) +
6) none (Lurking variable)

Steps to do a Correlation and Regression problem

1. Constructing a Scatter diagram and comment on its nature (linear or non-linear, positive or negative, strong or weak relationship).

Why do we need a scatter diagram?

a) To see if data exhibit a linear pattern or not
b) To see if linear pattern is positive or negative
c) To see how closely (strongly or perfectly) data are clustered around the a straight line.
d) To detect any outlier (a point that is lying far away from the other data points).

Different Possible shapes of a Scatter Diagram

Strong Positive Linear Correlation

Positive Linear Correlation

No Correlation

$r=-1$
Perfect Negative Linear Correlation

Strong Negative Linear Correlation

Negative Linear Correlation

Non linear relationship

Very important: If pattern of data is not linear (looks like a curve) or it has an outlier, or it show no pattern then linear regression method is not valid and not applicable.

2 Computing $\boldsymbol{r}=$ Correlation Coefficient (the measurement of strength of relationship between 2 variables) by formula given by $r=\frac{n \sum x y-\sum x \sum y}{\sqrt{n \sum x^{2}-\left(\sum x\right)^{2}} \sqrt{n \sum y^{2}-\left(\sum y\right)^{2}}}=$ or using Ti calculator and comment on its strength. The value of \boldsymbol{r} is always between $-1 \leq r \leq 1$

Linear Correlation Coefficient and scatter Diagram

3. Computing $\bar{x}, \bar{y}, s_{x}, s_{y}$,
4. Using the formula or TI calculator to computing Slope (\boldsymbol{a}) and y-intercepts (\boldsymbol{b}) for the regression equation $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}+\boldsymbol{b}$ by formula Slope $=\boldsymbol{a}=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}}$ and \boldsymbol{y}-itc $=\boldsymbol{b}=\frac{\left(\sum y\right)\left(\sum x^{2}\right)-\left(\sum x\right)\left(\sum x y\right)}{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}}$
5. Using $\boldsymbol{a}, \boldsymbol{b}$ and inputting them into regression equation $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}+\boldsymbol{b}$, then use this equation to estimate or predict one variable from the other. Estimated values are labeled as y^{\prime} (y -prime) and x^{\prime} (x -prime).

Guideline for using the regression line:

1. If there is no significant linear correlation, do not use the regression equation.
2. When using the regression equation for prediction, stay within the range of the available sample data.
3. A Regression equation based on old data is not necessarily valid now.

Marginal Change (Slope): in a variable is the amount that it changes in y -variable when the x -variable increases by one unit.
Outlier: is a point that is lying far away from the other data points.

Is there a relationship between hours of study and test scores?

	$\boldsymbol{x}=$ Hours Study/week	$\boldsymbol{y}=$ Test Score	$\boldsymbol{x}^{\mathbf{2}}$	$\boldsymbol{y}^{\mathbf{2}}$	$\boldsymbol{x} \boldsymbol{y}$
1	5	72	25	5184	360
2	10	88	100	7764	880
3	13	92	169	8464	1196
4	8	80	64	6400	640
	$\Sigma x=\mathbf{3 6}$	$\Sigma y=\mathbf{3 3 2}$	$\Sigma x^{2}=\mathbf{3 5 8}$	$\Sigma y^{2}=\mathbf{2 7 7 9 2}$	$\Sigma x y=\mathbf{3 0 7 6}$

1. Use the data and plot the data as a scatter diagram and comment on the pattern of the points.

Strong Positive

Linear Correlation

2. Compute the correlation coefficient and comment on that: a very strong positive linear correlation.

$$
r=\frac{n \sum x y-\sum x \sum y}{\sqrt{n \sum x^{2}-\left(\sum x\right)^{2}} \sqrt{n \sum y^{2}-\left(\sum y\right)^{2}}}=\frac{(4)(3076)-(36)(332)}{\sqrt{4(358)-(36)^{2}} \sqrt{4(27792)-(332)^{2}}}=\frac{12304-11952}{\sqrt{136} \sqrt{944}}=\frac{352}{358.307}=0.9824
$$

3. Compute the slope and y-intercept and write the equation of regression line.

$$
\begin{aligned}
& \text { Slope }=\boldsymbol{a}=\frac{n\left(\sum x y\right)-\left(\sum x\right)\left(\sum y\right)}{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}}=\frac{4(3076)-(36)(332)}{4(358)-(36)^{2}}=\frac{12304-11952}{1432-1296}=\frac{352}{136}=\mathbf{2 . 5 8 8}=\mathbf{2 . 5 9} \\
& \boldsymbol{y}-\boldsymbol{i t c}=\boldsymbol{b}=\frac{\left(\sum y\right)\left(\sum x^{2}\right)-\left(\sum x\right)\left(\sum x y\right)}{n\left(\sum x^{2}\right)-\left(\sum x\right)^{2}}=\frac{(332)(358)-(36)(3076)}{4(358)-(36)^{2}}=\frac{118856-110736}{1432-1296}=\frac{8120}{136}=\mathbf{5 9 . 7 1}
\end{aligned}
$$

$$
y=a x+b=2.59 x+59.71
$$

4. Explain the slope based on the regression equation and the in relation of x and y variables.

In general for every additional hour of study per week the score goes up by 2.59 points.
5. Compute average and standard deviation for both x and y variables.

$$
\overline{\boldsymbol{x}}=36 / 4=\mathbf{9} \text { hrs } \quad \boldsymbol{s}_{\boldsymbol{x}}=3.37 \quad \overline{\boldsymbol{y}}=332 / 4=\mathbf{8 3} \quad \boldsymbol{s}_{\boldsymbol{y}}=8.87
$$

6. If one student studies 10 hours a week, use Reg. Equ. to estimate her test score. $x=10 \mathrm{hrs}, y^{\prime}=85.61$

$$
x=10 \mathrm{hrs}, \quad y^{\prime}=85.61
$$

7. If one student has test score of 90, use Reg. Equ. to estimate number of hours he spends studying per week.
and if $y=90, x^{\prime}=11.69 \mathrm{hrs}$

Input x-values in L1and y-values in $L 2$

2nd STAT PIOTS

for type, select the first option

Result: Scattered Plot

$2 \mathrm{~d} \boldsymbol{d} \rightarrow 0$	
Archive	
$\mathrm{Asm} \mathrm{m}^{\text {c }}$	

select Diagnostic on \rightarrow enter
enter
Diagnosticoln

LinRe9(ax+b)

Results

More Practice

	$\boldsymbol{x}=$ Hours Study/week	$\boldsymbol{y}=$ Test Score	\boldsymbol{x}^{2}	\boldsymbol{y}^{2}	$\boldsymbol{x} \boldsymbol{y}$
1	5	72			
2	10	88			
3	13	92			
4	8	80			
5	6	77			
6	4	64		$\sum x^{2}=410$	$\sum y^{2}=37817$
	$\sum x=46$	$\sum y=473$	$x y=3794$		

1. Use the data and plot the data as a scatter diagram and comment on the pattern of the points.

Comment: A very strong positive linear correlation.
2. Compute the correlation coefficient and comment on that $\quad r=0.963$ Very strong...?
3. Compute the slope and y-intercept and write the equation of regression line. Slope $=\mathrm{a}=2.92, \quad \mathrm{y}$-itc $=$ b $=56.41$

$$
y=a x+b=2.92 x+56.41
$$

4. Explain the slope based on the regression equation and the in relation of x and y variables.

In general for every additional hour of study per week the score goes up by 2.92 points.
5. Compute average and standard deviation for both x and y variables. $\overline{\boldsymbol{x}}=7.67, \overline{\boldsymbol{y}}=78.83, \quad \boldsymbol{s}_{\boldsymbol{x}}=3.386$, $\boldsymbol{s}_{\boldsymbol{y}}=10.28$
6. If one student studies 6 hours a week, use Reg. Equ. to estimate her test score. $\quad x=6, y^{\prime}=73.93$
7. If one student has test score of 85 , use Reg. Equ. to estimate number of hours he spends studying per week. $y=85, \quad x^{\prime}=9.79$

