## Abe Mirza

Topics Review
Part I (Section 4)
Statistics
Empirical Rules: If and only if the boxplot or histogram is centered then we can apply the three following empirical rules.


Example: Find all three empirical rules for Abe Stat final exam if the average was 72 and the standard deviation was 8 , assuming that boxplot was centered.

$$
\begin{array}{ll}
68 \%=72 \pm 1(8)=72 \pm 8 & 64<\mathbf{6 8} \% \text { of class got scores }<80 \\
95 \%=72 \pm 2(8)=72 \pm 16 & 56<\mathbf{9 5} \% \text { of class got scores }<88 \\
99.7 \%=72 \pm 3(8)=72 \pm 24 & 48<\mathbf{9 9 . 7} \% \text { of class got scores }<96
\end{array}
$$

## Extra Practice: Answer questions C on page 3 of practice problem part 1

Z-score: is used to show the relative position of a data point with respect of the rest of data by measuring how many standard deviation that point is away from the mean. To apply the z-score the boxplot or histogram must be centered.

$$
Z=\frac{x-\bar{x}}{s} \quad \text { or } \quad Z=\frac{x-\mu}{\sigma}
$$

The possible range of Z-values.
If $Z$-value is less than -2 or more than 2 , it is called unusual that could be unusually low or unusually high. If $Z$-value is between -2 and 2 , then it is called ordinary or common.
$\square$ 0 2

Unusual Values:

## Ordinary Values:

Unusual Values:

Example 1: Find the z-score of final exam for Tommy Yank in stat class at CSUS, if his score was 87, when the class average was 72 and the standard deviation was 8.
$Z=\frac{x-\mu}{\sigma}=\frac{87-72}{8}=\frac{15}{8}=1.875 \quad$ Ordinary or Unusual Value?
So, he does relatively an ordinary performance relative to the rest of his class.
Example 2: Find the z-score of final exam for Marcy Tank in stat class at UC Davis, if his score was 82, when the class average was 71 and the standard deviation was 4 .
$Z=\frac{x-\mu}{\sigma}=\frac{82-71}{4}=\frac{11}{4}=2.75 \quad$ Ordinary or Unusual Value?
So, she does relatively better than the rest of her class and her z score is unusual.

## Basic Probability

Probability of an event $\mathbf{E}=P(E)=\frac{f}{n}=\frac{\text { The number of desired (success) outcomes }}{\text { The total number of possible outcomes }}$

$$
0 \leq P(E) \leq 1
$$

| 0 | .25 | .5 | .75 | 1 |
| :--- | :--- | :---: | :--- | :--- |
| Impossible | unlikely | even chance | likely | certain |

If the probability of occurrence of an event such as event $\mathbf{E}$ is between $0 \leq P(E)<5 \%$ then its occurrence is called unusual.

| Definition | Tossing a coin | Examples |  |
| :---: | :---: | :---: | :---: |
| An experiment is an action, or trial, through which specific results (outcomes) are obtained. |  | Rolling a Die | Draw one card from deck of 52 cards |
| sample space $=\mathbf{n}$ All possible outcomes of an experiment are called | $\mathbf{n}=\mathbf{2} \text { sides }(\mathrm{H}, \mathrm{~T})$ <br> n = 2 outcomes | $\begin{aligned} & \mathbf{n}=\mathbf{6} \text { sides }(1,2,3,4,5,6) \\ & \mathbf{n}=\mathbf{6} \text { outcomes } \end{aligned}$ | $\begin{aligned} & n=52 \text { cards } \\ & n=52 \text { outcomes } \end{aligned}$ |
| Out of sample space how many is/are the desired outcome or outcomes? That will be $=\mathbf{f}$ | a tail $\mathrm{f}=1 \text { tail }$ | an odd number $(1,3,5)$ f = $\mathbf{3}$ odd numbers | $\begin{aligned} & \text { an Ace } \\ & \mathbf{f}=4 \text { Aces } \end{aligned}$ |
| Probability is the measure of how likely an event to occur $=P(E)=f / n$ | $P(T)=1 / 2=50 \%$ | $\begin{aligned} & \mathrm{P}(\text { odd number })=3 / 6 \\ & =50 \% \end{aligned}$ | $\begin{aligned} & \mathrm{P}(\text { Ace })=4 / 52 \\ & =1 / 13 \end{aligned}$ |

## Three Types of Probability

- Classical: (equally probable outcomes). Like flipping a coin, rolling a die, drawing one card from a deck of cards. In this type of probabilities, we know the probability of getting for number 5 is always $1 / 6$.
- Empirical: We need data like example A on page 2. So based on available data, the answer may be different each time. $P(E)=\frac{\text { Frequency of event } E}{\text { Total frequency }}=\frac{f}{n}$
- Subjective: Guess or intuition feelings (doctor feels patient has $80 \%$ chance of recovery).


## Example A:



The sample space has eight possible outcomes, $\{\mathbf{O}+, \mathbf{O}-, \mathbf{A}+, \mathbf{A}-, \mathbf{B}+, \mathbf{B}-, \mathbf{A B}+, \mathbf{A B}-\}$

Example B: (an example of empirical probability): the outcomes may vary from sample to sample Frequency distribution of annual income for U.S. families

| Income | Frequency <br> (10005) |
| :--- | :---: |
| Under $\$ 10,000$ | 5,216 |
| $\$ 10,000-\$ 14,999$ | 4,507 |
| $\$ 15,000-\$ 24,999$ | 10,040 |
| $\$ 25,000-\$ 34,999$ | 1,828 |
| $\$ 35,000-\$ 49,999$ | 12,841 |
| $\$ 50,000-\$ 74,999$ | 12,204 |
| $\$ 75,000 \& 8 v e r$ | 691 |

Part 1: Find the probability that a randomly selected person from this group makes $\$ 75,000$ and over

1) Experiment: randomly selecting a person.
2) Sample space $=n=69,597$
3) His/her income is $\$ 75,000$ and over: $f=12,961$
4) $\operatorname{Prob}(\$ 75,000$ and over $)=12,961 / 69,597=18.63 \%$

Part 2: Find the probability that a randomly selected person from this group makes $\$ 24,999$ or less

1) Experiment: randomly selecting a person.
2) Sample space $=n=69,597$
3) His/her income is $\$ 75,000$ and over: $f=19,763$
4) $\operatorname{Prob}(\$ 24,999$ or less $)=19,763 / 69,597=28.40 \%$

Example C. : (an example of empirical probability)


What is the probability that you spin the dial on the left spinner, and you get yellow? P (yellow)=1/5 What is the probability that you spin the dial on the right spinner, and you get lose turn? $\mathrm{P}($ Lose Turn $)=\mathbf{1} / \mathbf{1 2}$

Example D (an example of classical probability)
In a deck of 52 cards there are 13 diamonds and 12 faces, and 4 aces. If one card is drawn randomly find the probability that

## Solution:

a) $\mathrm{P}($ diamond $)=13 / 52=25 \%$
b) $\mathrm{P}($ face $)=12 / 52=23.08 \%$
c) $\mathrm{P}($ not face $)=40 / 52=76.92 \%$
d) $\mathrm{P}($ not diamond $)=39 / 52=75 \%$
e) $\mathrm{P}($ diamond and face $)=3 / 52=5.77 \%$

## Example E: (an example of classical probability)

If we roll 2 dice, then there are 36 possible outcomes meaning that the sample space is 36 or $=n=36$


## Solution:

a) find the probability that the sum of rolling two dice is 10

Event or desired outcomes: a sum of $10 \Rightarrow\{(4,6),(5,5),(6,4)\} \Rightarrow f=3$
$\operatorname{Prob}($ a sum of 10$)=3 / 36=1 / 12=8.33 \%$
b) find the probability that the sum of rolling two dice is 7

Event or desired outcomes: a sum of $7 \Rightarrow\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\} \Rightarrow f=6$
Prob (a sum of 10 ) $=6 / 36=1 / 6=4.17 \%$
c) find the probability that the sum of rolling two dice is not 7

Event or desired outcomes: a sum of not $7 \Rightarrow \neq\{(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)\} \Rightarrow f=30$
Prob (a sum of 10 ) $=30 / 36=5 / 6=83.33 \%$
d) find the probability that the sum of rolling is 10 or more

Event or desired outcomes: to get a sum 10 or more $\Rightarrow\{(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),\} \Rightarrow f=6$
Prob (a sum of 10 or more) $=6 / 36=1 / 6=16.67 \%$
e) find the probability that their sum is 5

Event or desired outcomes: to get a sum of $5 \Rightarrow\{(1,4),(2,3),(3,2),(4,1)\} \Rightarrow f=4$
Prob $($ a sum of 5$)=4 / 36=1 / 9=11.11 \%$

## Law of Large Numbers

- As an experiment is repeated over and over, the empirical probability of an event approaches the theoretical (actual) probability of the event.



## Multiplication Rule (Keywords: and, both, all)

$$
P(A \text { and } B \text { and } C \text { and } \ldots)=P(A) P(B) P(C) \ldots
$$

We use multiplication rule to find the probability that events $\mathrm{A}, \mathrm{B}, \mathrm{C}$ happen together or one after each other.

## Hint:

When you make a selection out of a group by using multiplication rule be aware of with or w/o replacement effect.
In a deck of 52 cards there are 13 diamonds and 12 faces, and 4 aces.
If 2 cards are randomly drawn w/o replacement, what is the probability that both are diamonds?
$\mathrm{P}($ both diamond $)=\frac{13}{52} \cdot \frac{12}{51}=5.88 \%$
If 2 cards are randomly drawn with replacement, what is the probability that both are diamonds?
$\mathrm{P}($ both diamond $)=\frac{13}{52} \cdot \frac{13}{52}=6.25 \%$

There are 13 diamonds and 12 faces, and 4 aces in a deck of card.
If 4 cards are randomly drawn w/o replacement then,
a) What is the probability that all 4 are diamond and how likelihood is this?

b) What is the probability that all 4 are aces and how likelihood is this?
c) What is the probability that all 4 are faces and how likelihood is this?

d) What is the probability that all 4 are non faces and how likelihood is this?
A. If we have a group of 4 men and 6 women, and we select two at random, without replacement, then

1. Find the probability that both are women. $\mathbf{P}(\mathbf{b o t h} \mathbf{W})=\mathbf{P}(\mathbf{W}$ and $\mathbf{W})=\frac{6}{10} \bullet \frac{5}{9}=\frac{30}{90}=0.33$
2. Find the probability that one of each gender is selected. That means one man one woman or one woman man

$$
\mathbf{P}(\mathbf{M W})=\frac{4}{10} \cdot \frac{6}{9}=\frac{24}{90}=\frac{8}{30}=0.267 \text { or } \mathbf{P}(\mathbf{W M})=\frac{6}{10} \cdot \frac{4}{9}=\frac{24}{90}=\frac{8}{30}=0.267
$$

Then you need to add these probabilities. $0.267+0.267=0.533=53.33 \%$
B. In a bag there are 3 red, 4 blue and 5 green marbles. If we draw $\mathbf{3}$ marbles at random (without replacement) then,

Find the probability that all

1) All red $\quad \mathbf{P}(\mathbf{R R R})=\frac{3}{12} \cdot \frac{2}{11} \cdot \frac{1}{10}=\frac{1}{220}=0.0004545$
2) Non red $\frac{9}{12} \cdot \frac{8}{11} \cdot \frac{7}{10}=\frac{21}{55}=0.38181$
3) All blue $\frac{4}{12} \cdot \frac{3}{11} \cdot \frac{2}{10}=\frac{1}{55}=0.018181$
4) None blue $\frac{8}{12} \cdot \frac{7}{11} \cdot \frac{6}{10}=\frac{14}{55}=0.2545$
C. In a bag there are 3 red, 4 blue and 5 green marbles. If we draw 3 marbles at random (with replacement, then,

## Find the probability that all

1) All red $\quad \mathbf{P}(\mathbf{R R R})=\frac{3}{12} \cdot \frac{3}{12} \cdot \frac{3}{12}=\frac{1}{64}=0.0156$
2) Non red $\frac{9}{12} \cdot \frac{9}{12} \cdot \frac{9}{12}=\frac{27}{64}=0.4219$
3) All blue $\frac{4}{12} \cdot \frac{4}{12} \cdot \frac{4}{12}=\frac{1}{27}=0.037$
4) None blue $\frac{8}{12} \cdot \frac{8}{12} \cdot \frac{8}{12}=\frac{8}{27}=0.2963$
