Abe Mirza	Topics Review	Part II (Section 5)	Statistic
Addition Rule			1
Counting			3
Discrete Probability Di	stribution (DPD)		5
More Applications of D	PD		7

Addition Rule (Keywords: or, at least, at most)

P(A or B) = P(A) + P(B) - p(A and B)

If there is no **overlapping** between event A and B then they are called mutually exclusive P(A and B) = 0

$$P(A \text{ or } B) = P(A) + P(B)$$

A.1, If we draw a card from a deck of card what is the probability that it will be red or King?

 $P(\mathbf{R} \text{ or } K) = P(R) + P(K) - P(R \text{ and } K) = \frac{26}{52} + \frac{4}{52} - \frac{2}{52} = \frac{28}{52} = \frac{7}{13} = 53.85\%$

A.2, If we draw a card from a deck of card what is the probability that it will be Queen or King?

 $P(Q \text{ or } K) = P(Q) + P(K) - P(Q \text{ and } K) = \frac{4}{52} + \frac{4}{52} - \frac{0}{52} = \frac{8}{52} = \frac{2}{13} = 15.38\%$

A.3 If we roll a die what is the probability getting an even number **or** multiple of 3? Solution: even $\{2,4,6\}$ and multiple of 3 $\{3,6\}$, even and multiple of 3 $\{6\}$

$$P(even \ or \ mult \ 3) = P(even) + P(mult \ 3) - P(even \ and \ mult \ 3) = \frac{3}{6} + \frac{2}{6} - \frac{1}{6} = \frac{4}{6} = \frac{2}{3} = 33.33\%$$

A.4 If we roll a die what is the probability getting an even number **or** multiple of 5? Solution: even $\{2, 4, 6\}$ and multiple of 5 $\{5\}$

$$P(even \ or \ mult \ 5) = P(even) + P(mult \ 5) - P(even \ and \ mult \ 5) = \frac{3}{6} + \frac{1}{6} - \frac{0}{6} = \frac{4}{6} = \frac{2}{3} = 33.33\%$$

A.5 Of the 60 people who answered "yes" to a question, 35 were male. Of the 40 people who answered "no" to the question, 10 were male.

	Yes	No	
Male	35	10	?
Female	?	?	?
	60	40	

Use the given information to complete the table.

	Yes	No	
Male	35	10	45
Female	25	30	55
	60	40	100

If **one** person is selected at random from the group, answers the following questions

Find the probability that the person answered "yes" or is male? $P(yes \ or \ male) = \frac{60}{100} + \frac{45}{100} - \frac{35}{100} = \frac{70}{100} = 70\%$

Find the probability that the person answered "no" or is female? $P(no \ or \ female) = \frac{40}{100} + \frac{55}{100} - \frac{30}{100} = \frac{65}{100} = 65\%$

B. The distribution of master degree in a college is listed as such

Major	Frequency
Math	110
Engineering	250
Business	300
Education	100
English	240
Total	1000

If one student is selected at random then what is the probability that he/she is majoring in Math or English?

$$P(M) + P(E) = \frac{110}{1000} + \frac{240}{1000} = \frac{350}{1000} = 35\%$$

If one student is selected at random then what ids the probability that he/she is majoring in Math or English or Business?

$$P(M) + P(E) + P(B) = \frac{110}{1000} + \frac{240}{1000} + \frac{300}{1000} = \frac{640}{1000} = 64\%$$

C. The table below shows a random sample of 500 students getting traffic tickets in terms of their **gender** and **living arrangements**.

	Home		Apart		Dorm				
Male	102	_	72				213		
Female	209		32	3		4	45		287
If one student who got tra	<i>311</i> ffic ticket is random	ly selecte	10 ed then find	5 the followi	ng pro	obabi	84 i lity tha	at	500
1. The student is Male or	lives at H ome	P(M) +	P(H) - P(M)	and H) = $\frac{213}{500}$	$\frac{3}{-+} \frac{311}{}$	102	$\frac{422}{500}$	= 84.4	%
2. The student is Female of	or lives at D orm	P(F) +	P(D) - P(Fa)	$nd D) = \frac{287}{500}$	$+\frac{84}{500}$	$-\frac{45}{500}$	$=\frac{326}{500}=$	= 65.2%	6
3. The student is Female	or lives at Home	P(F) + P	P(H) - P(Fanotes)	$(d H) = \frac{287}{500} + $	$-\frac{311}{500}-$	$\frac{209}{500} =$	$=\frac{389}{500}=$	77.8%	
4. The student lives at Do	rm or at Apt.	P(D) + P	P(A) - P(D and	$(d A) = \frac{84}{500} + $	$\frac{105}{500}$ -	$\frac{0}{500} =$	$\frac{189}{500} = 3$	37.8%	
5. The student is Female or lives at Apt. Ans: $\frac{359}{500} = 71.8\%$									
6. The student lives at Male or not living at Apt. Ans: $\frac{467}{500} = 93.4\%$									
7. The student is Male or lives at Apt or Dorm: Ans: $\frac{291}{500} = 58.2\%$									
Part 2 Topics Review	(Section 5)		02/02/2	020					

Principles of Counting

Objective: To find the total possible number of arrangements (ways) an event may occur.

- 1) Identify the purpose (Area Codes, Zip Codes, zip codes, pin numbers, License Plates, Password, Melodies)
- 2) Number of parts for that purpose (area code has 3 parts, zip code has 5 parts, pin number has 4 parts)
- 3) What will go into each part (letter, digit, symbols, specific value or character)
- 4) How many choices are available for each part?
- 5) Finally multiply the number of choices!

1) How many different zip codes are possible? $\underline{D \ D \ D \ D} = 10 \times 10 \times 10 \times 10 \times 10 = 100,000$

2) How many different zip codes are possible with no zero at the beginning?

 $\underline{D D} \underline{D D} \underline{D} \underline{D} = 9 \times 10 \times 10 \times 10 \times 10 = 90,000$

3) How many different 7- part license plates are possible with one digit first, 3 letters after followed by another 3 digits?

DLL **L**DD =
$$10 \times 26 \times 26 \times 26 \times 10 \times 10 \times 10 = 175,760,000$$

4) How many different 7- part license plates are possible if each part can use letter or digit?

$$\underline{DLL} \underline{LDDD} = 36 \times 36 \times 36 \times 36 \times 36 \times 36 \times 36 = 78,364,164,096$$

5) How many different 6-part password can be written (case sensitive with 10 digits, 52 letters and 8 symbols) $70 \times 70 \times 70 \times 70 \times 70 \times 70 = 117,649,000,000$

6) How many different 12-note melodies can be made by a 44-key keyboard?

 $44^{12} = 52,654,090,776,777,588,736$ 7) How many different 4- digit even numbers can we write with (0,5,6,3,8,7)? $\underline{D} \ \underline{D} \ \underline{D} \ \underline{D} \ 5 \times 6 \times 6 \times 3 = 540$ Hint: As 4- digit number zero can not be used as the first digit, and for an even number 3 choices 0,6,8 at the end.

8) How many different combinations can we set for this lock? Ans:60,466,176

Factorial

Permutation

Combination

Learn how to use you calculator to do Factorial, Permutation, and Combination!!!!

Factorial: Number of ways **n** different objects or subjects can be arranged. n! $5!=5\cdot 4\cdot 3\cdot 2\cdot 1=120$ $3!=3\cdot 2\cdot 1=6$ 0!=1

In how many ways **3 different prizes** can be given to **three different people**? $3! = 3 \cdot 2 \cdot 1 = 6$

In how many ways 3 people can **lineup** for a picture? $3! = 3 \cdot 2 \cdot 1 = 6$

ABC, ACB, BAC, BCA, CAB, CBA

02/02/2020

In how many ways five people can line up for a picture? $5! = 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$

In how many ways can we arrange **3** books in a bookshelf? $3! = 3 \cdot 2 \cdot 1 = 6$

Permutation: Number of ways x objects out of n objects can be arranged. Order in selection does matter!

TI-83/84
$$n \rightarrow math \rightarrow PRB \rightarrow Option 2 \rightarrow x$$

Try these permutations ${}_{5}P_{2} = 20$ ${}_{8}P_{5} = 6720$ ${}_{8}P_{7} = 40320$ ${}_{7}P_{6} = 5040$

In how many ways 2 different prizes (Watch, Tablet) can be given to three different people (A,B,C) ? $_{3}P_{2} = \frac{3!}{(3-2)!} = 6$ ways AW, AT, BW, BT, CW, CT

In how many ways can we select two out of three different people (A,B,C) for 1st and 2nd Prize?

$$_{3}P_{2} = \frac{3!}{(3-2)!} = 6$$
 ways A1, A2, B1, B2, C1, C2

1- In how many ways a teacher can give **different** prizes to 5 of his 18 students? Ans: 1,028,160

- 2 How many ways can a **president** and a **treasurer** be selected in a club of 11 members? ${}_{11}P_2$ Ans: 110
- 3 How many ways can a **president**, **vice-president**, and a **treasurer** be selected in a club ${}_{10}P_3$ Ans: 720 with 10 members?

Combination: Number of ways x objects out of n objects can be arranged. Order in selection does not matter!

TI-83/84
$$n \rightarrow math \rightarrow PRB \rightarrow Option 3 \rightarrow x$$

Try these

$$_{6}C_{1} = \frac{6!}{1!5!} = 6$$
 $_{5}C_{4} = 5$ $_{8}C_{4} = \frac{8!}{4!4!} = 70$ $_{4}C_{2} = \frac{4!}{2!2!} = 6$ $_{5}C_{0} = \frac{5!}{0!5!} = 1$ $_{5}C_{5} = \frac{5!}{5!0!} = 1$

In how many ways 2 same prizes (Watch) can be given to three different people (A,B,C)? Solution: ${}_{3}C_{2} = \frac{3!}{2!(3-2)!} = \frac{3!}{2!1} = 3$ ways AW, BW or AW, CW or BW, CW

In how many ways can we select **two** out of **five** letters (A, B, C, D, E)? ${}_{5}C_{2} = \frac{5!}{2!3!} = 10$ ways

AB, AC, AD, AE, BC, BD, BE, CD, CE, DE

- In how many ways a teacher can select 5 of his 23 students for a fieldtrip? $_{23}C_5$ Ans: 33,649- In how many ways can we select 3- member committee from a group of 8 people? $_{8}C_3$ Ans: 56

Probability Distribution

X= Random Variable							
A variable that has a single numerical value, determined by chance, for each outcome of a procedure.							
Discrete (countable)	Continuous (measurable)						
Examples	Examples						
- Number of applicants passing DMV test each day	- Average rainfall each year in Sacramento						
- Number of traffic violation on campus.	- Length of new born babies						
- Number of emergency visits each day at Hospital.	- Height of Redwood tree.						
Probability distribution used in the text,	Probability distribution used in the text,						
- General discrete type	- Uniform distribution						
Expected Value = Mean = $\mu = \sum (x p(x))$	- Normal probability distribution						
Standard deviation = $\sigma = \sqrt{\sum x^2 p(x) - \mu^2}$							
- Binomial							
Expected Value = Mean = $\mu = np$							
Standard deviation = $\sigma = \sqrt{np(1-p)}$							

Probability distribution is information about **all the outcomes** of an experiment and their **corresponding probabilities**.

For any probability distribution the summation of all the probabilities must add up to 1 or $\sum p(x) = 1$

Example 1: Create a probability distribution table for rolling a die also graph probability distribution. $\mathbf{x} = \mathbf{number}$ on the die

Outcome x	1	2	3	4	5	6	
P(X)	1/6	1/6	1/6	1/6	1/6	1/6	$\sum p(x) = 1$

Example 2: In a bag, we have of 5 reds 6 blues and 4 yellow marbles. The bottom table is the probability of getting a certain color marble form a bag. Is the table represent a probability distribution?

×	P(X)
Outcome	
Red	5/15
Blue	6/15
Yellow	4/15
	$\sum p(x) = 1$

No, because in a probability distribution the outcomes must be explained numerically not just by label.

Example 3. Let X to be the number of absent employees in class on any given day.

Х	f (days)		
2	10		
3	20		
4	15		
5	5	+	

To find probability values p(x) in the 3rd column divide each frequency by their sum in this case 50

To draw probability distribution use x values as x- axis and p(x) values as y-axis.

To find the mean (expected value) create last column x p(x) by multiplying x and p(x) in each row. The mean (expected value) is the summation of x p(x) column.

Х	f (days)	$\mathbf{P}(\mathbf{X}) = f \neq$	⊢ n	x p(x)	
2	10	10/50 = 0.2	20	0.40	
3	20	0.40		1.20	
4	15	0.30		1.20	
5	5	+ 0.10	+	0.50	+
	<i>n</i> = 50	1.0		3.3	
			Mean	$= \mu = \sum (x p(x)) =$: 3.3

It is **most likely** that 3 employees will be absent/day. It is **least likely** that 5 employees will be absent/day. A = 0.10 = -40

1. Find the probability at least 4 will be absentees on any given day. 0.30 + 0.10 = .40

2. Find the probability at most 4 will be absentees on any given day. 0.30 + 0.40 + 0.20 = .90

3. Find the expected or the mean number of absentees on any given day. Mean $= \mu = \sum xp(x) = 3.3$

TI-83/84, to find expected values:

enter x values in L1 and P(x) values into L2

Answer is 3.3

E. Let **X** = the number of **car accidents** at Sun City on any given day.

х	f	<i>p</i> (<i>x</i>) %	x p(x)											
5	2	.02	0.10	P(x)										
6	3													
7	8													
8	9	.09	0.72											
9	15													
10	18	.18	1.8											
11	20													
12	25	.25 +	3 +	X	5	6	7	8	9	10	11	12		
	100	1.0	Mean = ?											

- Complete the table and draw probability distribution, locate approximately mode, median and the mean and,

- 1. Find the probability that there will be at least 10 accidents on any given day. Ans: .18+.20+.25 = 63 %
- 2. Find the probability that there will be at most 7 accidents on any given day. Ans: .08+.03+.02 = 13 %
- 3. Find the **expected number** or the **mean** of accidents on any given day. *Mean* =9.91

F. Let **X** = the number of **emergency visits** at the hospital on any given day.

- Complete the table, draw probability distribution, locate approximately mode, median and the mean and,

1. Find the probability that there will be at least 5 emergency visits on any given day. Ans: 64 %

2. Find the probability that there will be at most 3 emergency visits on any given day. Ans: 20 %

3. Find the **expected number** or the **mean** of emergency visits on any given day. **Mean = 5**.

Expected Value Problems Hint: To find the expected value use the formula $\sum (x \times p(x))$

A. A \$1 slot machine in a casino has a winning prize of \$6 for each play with winning probability 15/100. What are the **expected results** for the player each time the game is played.

Outcome	x	p(x)	x p(x)
Win	6-1	15/100	$5 \times .15 = .75$
Lose	-1	85/100	$-1 \times .85 =85$
		$\sum p(x) = 1$	$\sum xp(x) = -0.10$

Each time the game is played, player has an expected loss of \$0.10 and the house an expected gain of \$0.10

- If a slot machine is played 1000 times a day and 360 days a year then each machine is expected revenue?

 $.10 \times 1000 \times 360 = $36,000$ per year.

If a typical casino has 100 slot machines, then the total **expected revenue** will be $36,000 \times 100 = 3,600,000!!!!$

B. A \$1 slot machine in a casino has a winning prize of \$6 for each play with winning probability 10/100. What are the **expected results** for the player and the house each time the game is played?

Outcome	x	p(x)	x p(x)
Win			
Lose			
		$\sum p(x) = 1$	$\sum xp(x) = -0.40$

How much will be the **expected** revenue if each slot machine is played 1000 times a day and 360 days a year and a typical casino has 100 slot machines. **Ans: \$14,400,000 per year**. *Solution is same as above problem*

C) In a game, you have a 4 probability of winning \$100 and a 46 probability of losing \$10. What is your expected value? Hint, you do not need to subtract 10, from winning because you only pay if you lose! Ans:\$-1.2

Outcome	x	p(x)	x p(x)
Win	100	4/50	$100 \times .8 = 8$
Lose	-10	46 / 50	?
		$\sum p(x) = 1$	$\sum xp(x) =$

D) A contractor is considering a sale that promises a profit of \$20,000 with a probability of 0.60 or a loss (due to bad weather, strikes, and such) of \$10,000 with a probability of 0.4. What is the **expected outcome**?

Outcome	x	p(x)	x p(x)
profit			
loss			
		$\sum p(x) = 1$	$\sum xp(x) =$

Ans:\$8,000

E) Suppose you buy 1 ticket for \$1 out of a lottery of 1000 tickets where the prize for the one winning E) _____ ticket is to be \$400. What is your **expected value**? **Ans:\$-0.60**

F) A 28-year-old man pays \$159 for a one-year life insurance policy with coverage of \$140,000. If the F) _____ probability that he will live through the year is 0.9994, what is the **expected value** for the insurance policy? **Ans:** \$-74.90

G) On a multiple-choice test, a student is given five possible answers for each question.
G) ______
The student receives 1 point for a correct answer and loses ¼ point for an incorrect answer.
If student has no idea for the correct answer for a particular question and merely guesses, then what is the student's expected points on each question? Ans:0

H) Suppose also that on one of the questions you can eliminate two of the five answers as being wrong. **H)**______If you guess at one of the remaining three answers, what is your **expected points** on each question?

Ans:0.167

E					
х	f	P(x)%	x P(x)		
5	2	0.02	0.10		
6	3	0.03	0.18		
7	8	0.08	0.56		
8	9	0.09	0.72		
9	15	0.15	1.35		
10	18	0.18	1.80		
11	20	0.20	2.20		
12	25	0.25	3.00		
	100	1.00	9.91		
Mean =9.91					

F						
Х	f	P(x)%	x P(x)			
2	4	0.08	0.16			
3	6	0.12	0.36			
4	8	0.16	0.64			
5	12	0.24	1.2			
6	10	0.20	1.2			
7	6	0.12	0.84			
8	4	0.08	0.64			
	50	1.00	5.04			
Mean = 5						

E-Lottery			F- Life Insurance			
х	p(x) x . P(x)			x	p(x)	x . P(x)
399	0.001	0.399	Die	140000	0.0006	84
-1	0.999	-0.999	Survive	-159	0.9994	-158.9046
	1	-0.6			1	-74.9046

	G- Multiple choice				H- Multiple choice			
	Х	P(x)	X*P(X)		Х	P(x)	X*P(X)	
Correctly	1	0.2	0.2	Correctly	1.000	0.333	0.333	
Incorrectly	-0.25	0.8	-0.2	Incorrectly	-0.250	0.667	-0.167	
		1	0			1	0.167	