Abe Mirza	Topics Review	Part II (Section 5)
Addition Rule	Statistic	
Counting	$\mathbf{1}$	
Discrete Probability Distribution (DPD)	3	
More Applications of DPD	$\mathbf{5}$	

Addition Rule (Keywords: or, at least, at most)

$$
P(A \text { or } B)=P(A)+P(B)-p(A \text { and } B)
$$

If there is no overlapping between event A and B then they are called mutually exclusive $P(A$ and $B)=0$

$$
P(A \text { or } B)=P(A)+P(B)
$$

A.1, If we draw a card from a deck of card what is the probability that it will be red or King?
$P(\mathrm{R}$ or $K)=P(R)+P(K)-P(R$ and $K)=\frac{26}{52}+\frac{4}{52}-\frac{2}{52}=\frac{28}{52}=\frac{7}{13}=53.85 \%$
A.2, If we draw a card from a deck of card what is the probability that it will be Queen or King?
$P(Q$ or $K)=P(Q)+P(K)-P(Q$ and $K)=\frac{4}{52}+\frac{4}{52}-\frac{0}{52}=\frac{8}{52}=\frac{2}{13}=15.38 \%$
A. 3 If we roll a die what is the probability getting an even number or multiple of 3 ?

Solution: even $\{2,4,6\}$ and multiple of $3\{3,6\}$, even and multiple of $3\{6\}$

$$
P(\text { even or mult } 3)=P(\text { even })+P(\text { mult } 3)-P(\text { even and mult } 3)=\frac{3}{6}+\frac{2}{6}-\frac{1}{6}=\frac{4}{6}=\frac{2}{3}=33.33 \%
$$

A. 4 If we roll a die what is the probability getting an even number or multiple of 5 ?

Solution: even $\{2,4,6\}$ and multiple of $5\{5\}$

$$
P(\text { even or mult } 5)=P(\text { even })+P(\text { mult } 5)-P(\text { even and mult } 5)=\frac{3}{6}+\frac{1}{6}-\frac{0}{6}=\frac{4}{6}=\frac{2}{3}=33.33 \%
$$

A. 5 Of the 60 people who answered "yes" to a question, 35 were male. Of the 40 people who answered "no" to the question, 10 were male.

	Yes	No	
Male	35	10	$\boldsymbol{?}$
Female	$?$	$?$	$?$

Use the given information to complete the table.

	Yes	No	
Male	35	10	$\mathbf{4 5}$
Female	25	30	$\mathbf{5 5}$
$\mathbf{6 0}$			

If one person is selected at random from the group, answers the following questions
Find the probability that the person answered "yes" or is male? $P($ yes or male $)=\frac{60}{100}+\frac{45}{100}-\frac{35}{100}=\frac{70}{100}=70 \%$

Find the probability that the person answered "no" or is female? $P($ no or female $)=\frac{40}{100}+\frac{55}{100}-\frac{30}{100}=\frac{65}{100}=65 \%$

B. The distribution of master degree in a college is listed as such

Major	Frequency
Math	$\mathbf{1 1 0}$
Engineering	$\mathbf{2 5 0}$
Business	$\mathbf{3 0 0}$
Education	$\mathbf{1 0 0}$
English	$\mathbf{2 4 0}$
Total	$\mathbf{1 0 0 0}$

If one student is selected at random then what is the probability that he/she is majoring in Math or English?

$$
P(M)+P(E)=\frac{110}{1000}+\frac{240}{1000}=\frac{350}{1000}=35 \%
$$

If one student is selected at random then what ids the probability that he/she is majoring in Math or English or Business?

$$
P(M)+P(E)+P(B)=\frac{110}{1000}+\frac{240}{1000}+\frac{300}{1000}=\frac{640}{1000}=64 \%
$$

C. The table below shows a random sample of 500 students getting traffic tickets in terms of their gender and living arrangements.

	Home	Apartment	Dorm	213
Male	102	72	39	
Female	209	33	45	$\mathbf{2 8 7}$

If one student who got traffic ticket is randomly selected then find the following probability that

1. The student is Male or lives at Home
2. The student is Female or lives at Dorm

$$
P(M)+P(H)-P(M \text { and } H)=\frac{213}{500}+\frac{311}{500}-\frac{102}{500}=\frac{422}{500}=84.4 \%
$$

$$
P(F)+P(D)-P(F \text { and } D)=\frac{287}{500}+\frac{84}{500}-\frac{45}{500}=\frac{326}{500}=65.2 \%
$$

3. The student is Female or lives at Home

$$
P(F)+P(H)-P(F \text { and } H)=\frac{287}{500}+\frac{311}{500}-\frac{209}{500}=\frac{389}{500}=77.8 \%
$$

4. The student lives at Dorm or at Apt. $\quad P(D)+P(A)-P(D$ and $A)=\frac{84}{500}+\frac{105}{500}-\frac{0}{500}=\frac{189}{500}=37.8 \%$
5. The student is Female or lives at Apt. Ans: $\frac{359}{500}=71.8 \%$
6. The student lives at Male or not living at Apt. Ans: $\frac{467}{500}=93.4 \%$
7. The student is Male or lives at Apt or Dorm: Ans: $\frac{291}{500}=58.2 \%$

Principles of Counting

Objective: To find the total possible number of arrangements (ways) an event may occur.

1) Identify the purpose (Area Codes, Zip Codes, zip codes, pin numbers, License Plates, Password, Melodies)
2) Number of parts for that purpose (area code has 3 parts, zip code has 5 parts, pin number has 4 parts)
3) What will go into each part (letter, digit, symbols, specific value or character)
4) How many choices are available for each part?
5) Finally multiply the number of choices!
6) How many different zip codes are possible?

$$
\underline{\mathrm{D} D} \underline{\mathrm{D} D} \underline{\mathrm{D}}=10 \times 10 \times 10 \times 10 \times 10=100,000
$$

2) How many different zip codes are possible with no zero at the beginning?

$$
\underline{\mathrm{DD}} \underline{\mathrm{DD}} \underline{\mathrm{D}}=9 \times 10 \times 10 \times 10 \times 10=90,000
$$

3) How many different 7-part license plates are possible with one digit first, 3 letters after followed by another 3 digits?

$$
\underline{\mathrm{DLL}} \underline{\mathrm{LD}} \underline{\mathrm{DD}}=10 \times 26 \times 26 \times 26 \times 10 \times 10 \times 10=175,760,000
$$

4) How many different 7- part license plates are possible if each part can use letter or digit?

$$
\underline{\mathrm{DL}} \underline{\mathrm{~L}} \underline{\mathrm{LD}} \underline{\mathrm{D} D}=36 \times 36 \times 36 \times 36 \times 36 \times 36 \times 36=78,364,164,096
$$

5) How many different 6-part password can be written (case sensitive with 10 digits, 52 letters and 8 symbols)

$$
70 \times 70 \times 70 \times 70 \times 70 \times 70=117,649,000,000
$$

6) How many different 12 -note melodies can be made by a 44-key keyboard?

$$
44^{12}=52,654,090,776,777,588,736
$$

7) How many different 4 - digit even numbers can we write with $(0,5,6,3,8,7)$?

$$
\underline{\mathrm{D}} \underline{\mathrm{D}} \quad \underline{\mathrm{D}} \quad 5 \times 6 \times 6 \times 3=540
$$

Hint: As 4 - digit number zero can not be used as the first digit, and for an even number 3 choices $0,6,8$ at the end.
8) How many different combinations can we set for this lock? Ans:60,466,176

Factorial

Permutation

Learn how to use you calculator to do Factorial, Permutation, and Combination!!!!
Factorial: Number of ways \mathbf{n} different objects or subjects can be arranged. n !

$$
5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120 \quad 3!=3 \cdot 2 \cdot 1=6 \quad 0!=1
$$

In how many ways $\mathbf{3}$ different prizes can be given to three different people? $3!=3 \cdot 2 \cdot 1=6$
In how many ways 3 people can lineup for a picture? $3!=3 \cdot 2 \cdot 1=6$
ABC, ACB, BAC, BCA, CAB, CBA

In how many ways five people can line up for a picture? $5!=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120$
In how many ways can we arrange $\mathbf{3}$ books in a bookshelf? $3!=3 \cdot 2 \cdot 1=6$
Permutation: Number of ways \mathbf{x} objects out of \mathbf{n} objects can be arranged. $\underline{\text { Order in selection does matter! }}$

$$
\text { TI-83/84 } n \rightarrow \text { math } \rightarrow P R B \rightarrow \text { Option } 2 \rightarrow x
$$

Try these permutations $\quad{ }_{5} P_{2}=20 \quad{ }_{8} P_{5}=6720 \quad{ }_{8} P_{7}=40320 \quad{ }_{7} P_{6}=5040$
In how many ways $\mathbf{2}$ different prizes (Watch, Tablet) can be given to three different people ($\mathbf{A}, \mathbf{B}, \mathbf{C}$) ?
${ }_{3} P_{2}=\frac{3!}{(3-2)!}=6$ ways AW, AT, BW, BT, CW, CT
In how many ways can we select two out of three different people ($\mathbf{A}, \mathbf{B}, \mathbf{C}$) for 1 st and 2 nd Prize?
${ }_{3} P_{2}=\frac{3!}{(3-2)!}=6$ ways
A1, A2,
B1, B2,
C1, C2

1- In how many ways a teacher can give different prizes to 5 of his 18 students?
${ }_{18} P_{5}$
Ans: 1,028, 160

2 - How many ways can a president and a treasurer be selected in a club of 11 members?
${ }_{11} P_{2}$
Ans: 110

3 - How many ways can a president, vice-president, and a treasurer be selected in a club ${ }_{10} P_{3}$
Ans: 720 with 10 members?

Combination: Number of ways \mathbf{x} objects out of \mathbf{n} objects can be arranged. Order in selection does not matter!
TI-83/84 $n \rightarrow$ math $\rightarrow P R B \rightarrow$ Option $3 \rightarrow x$
Try these
${ }_{6} C_{1}=\frac{6!}{1!5!}=6 \quad{ }_{5} C_{4}=5 \quad{ }_{8} C_{4}=\frac{8!}{4!4!}=70 \quad{ }_{4} C_{2}=\frac{4!}{2!2!}=6 \quad{ }_{5} C_{0}=\frac{5!}{0!5!}=1 \quad{ }_{5} C_{5}=\frac{5!}{5!0!}=1$
In how many ways $\mathbf{2}$ same prizes (\mathbf{W} atch) can be given to three different people ($\mathbf{A}, \mathbf{B}, \mathbf{C}$) ?
Solution: ${ }_{3} C_{2}=\frac{3!}{2!(3-2)!}=\frac{3!}{2!1}=3$ ways $\quad \mathbf{A W}, \mathbf{B W} \quad$ or $\quad \mathbf{A W}, \mathbf{C W}$ or $\mathbf{B W}, \mathbf{C W}$

In how many ways can we select two out of five letters (A, B, C, D, E)? $\quad{ }_{5} C_{2}=\frac{5!}{2!3!}=10$ ways
$\mathrm{AB}, \quad \mathrm{AC}, \mathrm{AD}, \mathrm{AE}, \mathrm{BC}, \mathrm{BD}, \quad \mathrm{BE}, \mathrm{CD}, \mathrm{CE}, \mathrm{DE}$

- In how many ways a teacher can select 5 of his 23 students for a fieldtrip?
${ }_{23} C_{5}$
- In how many ways can we select 3 - member committee from a group of 8 people? ${ }_{8} C_{3}$

Ans: 33,649
Ans: 56

Probability Distribution

X= Random Variable	
A variable that has a single numerical value, determined by chance, for each outcome of a procedure.	
Discrete (countable)	Continuous (measurable)
Examples	Examples
- Number of applicants passing DMV test each day	- Average rainfall each year in Sacramento
- Number of traffic violation on campus.	- Length of new born babies
- Number of emergency visits each day at Hospital.	- Height of Redwood tree.
Probability distribution used in the text,	Probability distribution used in the text,
- General discrete type	- Uniform distribution
Expected Value $=$ Mean $=\mu=\sum(x p(x))$	- Normal probability distribution
Standard deviation $=\sigma=\sqrt{\sum x^{2} p(x)-\mu^{2}}$	
- Binomial	
Expected Value $=$ Mean $=\mu=n p$	
Standard deviation $=\sigma=\sqrt{n p(1-p)}$	

Probability distribution is information about all the outcomes of an experiment and their corresponding probabilities.

For any probability distribution the summation of all the probabilities must add up to 1 or $\Sigma p(x)=1$
Example 1: Create a probability distribution table for rolling a die also graph probability distribution. $\mathbf{x}=$ number on the die

Outcome x	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	
$\mathbf{P}(\mathbf{X})$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$\sum p(x)=1$

Example 2: In a bag, we have of 5 reds 6 blues and 4 yellow marbles. The bottom table is the probability of getting a certain color marble form a bag. Is the table represent a probability distribution?

\boldsymbol{x} Outcome		$\mathbf{P}(\mathrm{X})$
Red		$5 / 15$
Blue		$6 / 15$
Yellow		$4 / 15$
		$\sum p(x)=1$

No, because in a probability distribution the outcomes must be explained numerically not just by label.

Example 3. Let \mathbf{X} to be the number of absent employees in class on any given day.

\mathbf{X}	\mathbf{f} (days)	
2	10	
3	20	
4	15	
5	5	+

To find probability values $p(x)$ in the $3^{\text {rd }}$ column divide each frequency by their sum in this case 50
To draw probability distribution use \mathbf{x} values as \mathbf{x} - axis and $p(x)$ values as \mathbf{y}-axis.
To find the mean (expected value) create last column $x p(x)$ by multiplying x and $p(x)$ in each row. The mean (expected value) is the summation of $x p(x)$ column.

\mathbf{X}	\mathbf{f} (days)	$\mathbf{P}(\mathbf{X})=f \div n$	$x p(x)$
2	10	$10 / 50=0.20$	0.40
3	20	0.40	1.20
4	15	0.30	1.20
5	5	+	0.10
	$n=50$	$\mathbf{1 . 0}$	0.50
			$\mathbf{M e a n}=\mu=\Sigma(x p(x))=\mathbf{3 . 3}$

Probability Distribution.

It is most likely that 3 employees will be absent/day
It is least likely that 5 employees will be absent/day.

1. Find the probability at least 4 will be absentees on any given day.
2. Find the probability at most 4 will be absentees on any given day.
$0.30+0.10=.40$
$0.30+0.40+0.20=.90$
3. Find the expected or the mean number of absentees on any given day. Mean $=\mu=\sum x p(x)=3.3$

TI-83/84 , to find expected values:

L1	\|L2	L3	2
2 3 4 5	. 2		

then stat, calc, option 1,

L1, L2, enter
1-war St.ats Li,L
z

Answer is 3.3
1- War*St日ts

```
X =3:3
\sumX2=11.7
```

E. Let $\mathbf{X}=$ the number of car accidents at Sun City on any given day.

- Complete the table and draw probability distribution, locate approximately mode, median and the mean and,

1. Find the probability that there will be at least 10 accidents on any given day. Ans: . $\mathbf{1 8}+. \mathbf{2 0}+. \mathbf{2 5}=\mathbf{6 3} \%$
2. Find the probability that there will be at most 7 accidents on any given day. Ans: .08+. $\mathbf{0 3 +} \mathbf{+ 0 2}=\mathbf{1 3} \boldsymbol{\%}$
3. Find the expected number or the mean of accidents on any given day.

Mean $=9.91$
F. Let $\mathbf{X}=$ the number of emergency visits at the hospital on any given day.

\mathbf{F}			
\mathbf{x}	\mathbf{f}	$p(x) \%$	$x p(x)$
2	4	0.08	0.16
3	6		
4	8		
5	12	0.24	1.2
6	10		
7	6		
8	4		+
		1	Mean = ?

- Complete the table, draw probability distribution, locate approximately mode, median and the mean and,

1. Find the probability that there will be at least 5 emergency visits on any given day. Ans: $\mathbf{6 4} \%$
2. Find the probability that there will be at most 3 emergency visits on any given day. Ans: $\mathbf{2 0} \%$
3. Find the expected number or the mean of emergency visits on any given day. Mean $=5$.

Expected Value Problems Hint: To find the expected value use the formula $\sum(x \times p(x))$
A. A $\$ 1$ slot machine in a casino has a winning prize of $\$ 6$ for each play with winning probability $15 / 100$. What are the expected results for the player each time the game is played.

Outcome	x	$p(x)$	$x p(x)$
Win	$6-1$	$15 / 100$	$5 \times .15=.75$
Lose	-1	$85 / 100$	$-1 \times .85=-.85$
		$\sum p(x)=1$	$\sum x p(x)=-0.10$

Each time the game is played, player has an expected loss of $\$ 0.10$ and the house an expected gain of $\$ 0.10$

- If a slot machine is played 1000 times a day and 360 days a year then each machine is expected revenue?
$.10 \times 1000 \times 360=\$ 36,000$ per year.
If a typical casino has 100 slot machines, then the total expected revenue will be $\$ 36,000 \times 100=\$ 3,600,000!!!!$
B. A $\$ 1$ slot machine in a casino has a winning prize of $\$ 6$ for each play with winning probability $10 / 100$. What are the expected results for the player and the house each time the game is played?

Outcome	x	$p(x)$	$x p(x)$
Win			
Lose			
		$\sum p(x)=1$	$\sum x p(x)=-0.40$

How much will be the expected revenue if each slot machine is played 1000 times a day and 360 days a year and a typical casino has 100 slot machines. Ans: $\mathbf{\$ 1 4 , 4 0 0 , 0 0 0}$ per year. Solution is same as above problem
C) In a game, you have a 4 probability of winning $\$ 100$ and a 46 probability of losing $\$ 10$. What is your expected value? Hint, you do not need to subtract 10, from winning because you only pay if you lose! Ans:\$-1.2

Outcome	x	$p(x)$	$x p(x)$
Win	100	$4 / 50$	$100 \times .8=8$
Lose	-10	$46 / 50$	$?$
		$\sum p(x)=1$	$\sum x p(x)=$

D) A contractor is considering a sale that promises a profit of $\$ 20,000$ with a probability of 0.60 or a loss (due to bad weather, strikes, and such) of $\$ 10,000$ with a probability of 0.4 . What is the expected outcome?

Outcome	x	$p(x)$	$x p(x)$
profit			
loss			
		$\sum p(x)=1$	$\sum x p(x)=$

Ans:\$8,000
E) Suppose you buy 1 ticket for $\$ 1$ out of a lottery of 1000 tickets where the prize for the one winning \mathbf{E}) \qquad ticket is to be $\$ 400$. What is your expected value? Ans:\$-0.60
F) A 28 -year-old man pays $\$ 159$ for a one-year life insurance policy with coverage of $\$ 140,000$. If the
F) \qquad probability that he will live through the year is 0.9994 , what is the expected value for the insurance policy? Ans:\$ -74.90
G) On a multiple-choice test, a student is given five possible answers for each question.
G) \qquad
The student receives 1 point for a correct answer and loses $1 / 4$ point for an incorrect answer.
If student has no idea for the correct answer for a particular question and merely guesses, then what is the student's expected points on each question? Ans:0
H) Suppose also that on one of the questions you can eliminate two of the five answers as being wrong. H) If you guess at one of the remaining three answers, what is your expected points on each question?

Ans:0.167

E			
x	f	$P(x) \%$	$x P(x)$
5	2	0.02	0.10
6	3	0.03	0.18
7	8	0.08	0.56
8	9	0.09	0.72
9	15	0.15	1.35
10	18	0.18	1.80
11	20	0.20	2.20
12	25	0.25	3.00
	100	$\mathbf{1 . 0 0}$	9.91
Mean =9.91			

F			
X	f	$\mathrm{P}(\mathrm{x})$ \%	$x \mathrm{P}(\mathrm{x})$
2	4	0.08	0.16
3	6	0.12	0.36
4	8	0.16	0.64
5	12	0.24	1.2
6	10	0.20	1.2
7	6	0.12	0.84
8	4	0.08	0.64
	50	1.00	5.04
Mean = 5			

E-Lottery			
x	$p(x)$	$x . P(x)$	
399	0.001	0.399	
Die			
-1	0.999	-0.999	
	1	-0.6	

F- Life Insurance		
x	$\mathrm{p}(\mathrm{x})$	$\mathrm{x} \cdot \mathrm{P}(\mathrm{x})$
140000	0.0006	84
-159	0.9994	-158.9046
	1	-74.9046

G- Multiple choice				H- Multiple choice			
	X	$\mathrm{P}(\mathrm{x})$	X*P(X)		X	$\mathbf{P}(\mathrm{x})$	X*P(X)
Correctly	1	0.2	0.2	Correctly	1.000	0.333	0.333
Incorrectly	-0.25	0.8	-0.2	Incorrectly	-0.250	0.667	-0.167
		1	0			1	0.167

