

Properties

1. Normal Probability Distribution deals with continuous random variables.
(age, speed, temp, weight, length, time, ...)
2. The entire area under the curve is $100 \%=1,50 \%$ of area to the left and 50% to the right.
3. The larger the standard deviation the wider the distribution will be.
4. The area under the curve represents the probability.
5. The graph of the standard normal curve approaches zero as z increases in positive direction or decreases in negative direction.
6. The area or percentage under the curve (area between two boundaries) can be about an individual or the entire population.

Standard Normal Probability Distribution (SNPD)

It is a special case of normal distribution when $\mu=0$ and $\sigma=1$ the horizontal axis is called the \mathbf{Z}-axis.
The graph of the standard normal curve approaches zero as z increases in positive direction or decreases in negative direction
$\mu=0$ and $\sigma=1$

Finding area (percentage) under Standard Normal Probability distribution by using TI 83/84
Note 1: When using TI 83/84,
You need a Lower Boundary LB or, an Upper Boundary $\boldsymbol{U B}$ and $\mu=0$ and $\sigma=1$
Note 3: Sketch a normal curve, draw both boundaries and shade the area in between the boundaries.
Note 4: If one boundary is missing either Lower or Upper, then use the following rule to create one.
Formulas to create missing Lower Boundary $\boldsymbol{L B}=\boldsymbol{\mu} \mathbf{- 5} \boldsymbol{\sigma}$
Formulas to create missing Upper Boundary $U B=\mu+\mathbf{5} \sigma$

Steps to use TI-83/84

2 nd \rightarrow DISTR \rightarrow Option 2 then normalcdf (LB,UB,0,1) \rightarrow enter

Example 1 Find the area (percentage) between $z=-1$ and $z=1 \quad P(-1<Z<1)=$? (68% empirical rule)

TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf (LB,UB,0,1) \rightarrow enter
TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf $(-1,1,0,1) \rightarrow$ enter \quad answer: 68.27%

Example 2 Find the area (percentage) between $z=-2$ and $z=2 \quad P(-1<Z<2)=$? ($\mathbf{9 5 \%}$ empirical rule)

TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf $(-2,2,0,1) \rightarrow$ enter answer: 95.45%
Example 3 Find the area (percentage) between $z=-3$ and $z=3$ (basically applying $\mathbf{9 9 . 7 \%}$ empirical rule) TI-83/84 \quad 2nd \rightarrow DISTR \rightarrow Option 2 then \quad normalcdf $(-3,3,0,1) \rightarrow$ enter answer: 99.73\%

Example 4 Find the area (percentage) between $z=-10$ and $z=10$ (between $\mathbf{1 0}$ standard deviation)
Important

TI-83/84 \quad 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf $(-10,10,0,1) \rightarrow$ enter answer: 99.99\%

Example 5 Find the area (percentage) between $z=-1.5$ and $z=2.2 \quad P(-1.5<Z<2.2)=$?

TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf $(-1.5,2.2,0,1) \rightarrow$ enter answer: 91.92\%

Example 6 Find the area (percentage) greater than $z=1.23$ $P(1.23<Z)=$?

$1.23 \quad 5$

Upper boundary is missing: create an upper boundary $U B=\mu+5 \sigma$
in this case
$U B=0+5(1)=5$

TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf $(1.23,5,0,1) \rightarrow$ enter answer: 10.93%

Example $7 \quad$ Find the area (percentage) less than $z=1.23$
$P(Z<1.23)=$?

Lower boundary is missing: create a lower boundary $\boldsymbol{L B}=\boldsymbol{\mu}-5 \boldsymbol{\sigma}$ in this case
$L B=0-5(1)=-5$
TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf $(-5,1.23,0,1) \rightarrow$ enter answer: 89.065\%

Example $8 \quad$ Find the area (percentage) less than $z=-1.07$
$P(Z<-1.07)=$?

Lower boundary is missing: create a lower boundary $\boldsymbol{L B}=\boldsymbol{\mu}-5 \boldsymbol{\sigma} \quad$ in this case $\quad L B=0-5(1)=-5$
TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf $(-5,-1.07,0,1) \rightarrow$ enter answer: 14.23%
Example $9 \quad$ Find the area (percentage) greater than $z=2.35$ $P(2.35<Z)=$?

Upper boundary is missing: create an upper boundary $\boldsymbol{L B}=\boldsymbol{\mu}+5 \boldsymbol{\sigma}$ in this case $\quad U B=0+5(1)=5$
TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf $(2.35,5,0,1) \rightarrow$ enter answer: 0.94%

More Practice on S N P D when $\mu=0$ and $\sigma=1$ the horizontal axis is Z-axis.

TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf (LB,UB,0,1) \rightarrow enter
Formulas to create missing Upper Boundary $\boldsymbol{U B}=\mu+\mathbf{5} \sigma \quad \boldsymbol{U B}=0+5(1)=5$
missing Lower Boundary $\boldsymbol{L B}=\boldsymbol{\mu}-\mathbf{5 \sigma} \quad \boldsymbol{L B}=\mathbf{0 - 5 (1) = - 5}$

1) $\mathbf{P}(-1.25<\mathrm{Z}<2.61)=$

2) $\mathbf{P}(\mathbf{2 . 2 2}<\mathbf{Z}<3.87)=$

Answer $=$ normalcdf $(-1.25,2.61,0,1)=0.889$
3) $\mathbf{P}(\mathrm{Z}<\mathbf{2 . 6 1})=$
Answer $=$ normalcdf $(2.22,3.87,0,1)=0.0131$
4) $\mathbf{P}(-1.67<\mathrm{Z}<0.08)=$

Answer = normalcdf ($-5,2.61,0,1$) $=0.9955$
Answer = normalcdf $(-1.67,0.08,0,1)=0.4844$
5) $\mathrm{P}(-1.64<\mathrm{Z}<1.64)=$

6) $\mathbf{P}(-1.28<\mathrm{Z})=$

Answer $=$ normalcdf $(-1.64,1.64,0,1)=0.8990$
Answer $=$ normalcdf $(-1.28,5,0,1)=0.8997$
8) $\mathbf{P}(\mathrm{Z}<-2.16)=$

Answer $=$ normalcdf $(2.51,5,0,1)=0.0060$
11) $\mathbf{P}(-5.34<Z<-2.61)=$

Answer = normalcdf($-5.31,-2.61,0,1)=0.0044$
10) $\mathbf{P}(-1.82<\mathrm{Z}<2.81)=$

Answer $=$ normalcdf $(-1.28,2.81,0,1)=0.9631$
12) $P(-0.5<\mathrm{Z})=$

Answer $=$ normalcdf $(-0.5,5,0,1)=0.6915$

Non-Standard Normal Probability Distribution $\mu \neq 0$ and $\sigma \neq 1$
 TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf (LB,UB, μ, σ) \rightarrow enter

The average score for final stat exam was 76 with a standard deviation 5 . If scores are normally distributed answer the following questions: A normal distribution that $\mu=76, \quad \sigma=5$ and the horizontal axis is called the \mathbf{X}-axis.

1. What percentage of students got scores between $\mathbf{7 0}$ and $\mathbf{8 0}$?

TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf $(70,80,76,5) \rightarrow$ enter answer: 67.31%

2. What percentage of students got scores between $\mathbf{8 0}$ and $\mathbf{9 0}$?

TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf (80,90,76,5) \rightarrow enter answer: 20.93\%
3. What percentage of students got scores less than 70? Lower boundary is missing

In this case, the logical choice for Lower boundary is $L B=0$
TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf ($0,70,76,5$) \rightarrow enter answer: 11.51%
4. What percentage of students got scores more than $\mathbf{9 0}$? Upper boundary is missing

In this case, the logical choice for upper boundary is $U B=100$
TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf $(90,100,76,5) \rightarrow$ enter answer: 0.255%
5. What percentage of students got scores within one standard deviation of the mean?

For this problem
Upper boundary: $U B=\mu+1 \sigma=76+5=81$
Lower boundary: $L B=\mu-1 \sigma=76-5=71$

TI-83/84 2nd \rightarrow DISTR \rightarrow Option 2 then normalcdf $(81,91,76,5) \rightarrow$ enter answer: 68.27\%

Finding the cut-of point with a given \%

Finding cut-off point means, given an area either to the right or left, then find its corresponding boundary.
The final stat exam had an average of $\mathbf{7 6}$ with a standard deviation 5. If scores are normally distributed answer the following questions

Ex:1 According to grading policy, the bottom 5% of the class get a grade of F Find the cutting score for F

TI-83/84 2nd \rightarrow DISTR \rightarrow Option 3 then invNorm $(0.05,76,5) \rightarrow$ enter answer: $x=67.778$

Ex: 2 According to grading policy, the top 5\% of the class get a grade of A

In using TI, area on the top must be subtract area from 1(in this case $1-0.05=.95$)

?
TI-83/84 2nd \rightarrow DISTR \rightarrow Option 3 then invNorm $(0.95,76,5) \rightarrow$ enter

Ex: 3 Find the score that corresponds to the Q1(bottom 25\%)

TI-83/84 2nd \rightarrow DISTR \rightarrow Option 3 then invNorm $(0.25,76,5) \rightarrow$ enter
answer: 72.63

Ex: 4 Find the score that corresponds to the Q3 (bottom 75% or top 25%)
In using TI, area on the top must be subtract area from 1 (in this case $1-0.05=.95$)
TI-83/84 2nd \rightarrow DISTR \rightarrow Option 3 then invNorm $(0.75,76,5) \rightarrow$ enter

answer: $x=79.37$

TI-83/84 2nd \rightarrow DISTR \rightarrow Option 3 then invNorm $(0.35,76,5) \rightarrow$ enter answer: $x=79.37$

Application of Normal Probability Distribution

1) On a given test the average test scores was 68 with standard deviation of 8 . If the scores are normally distributed, then find the probability as what percentage of students got scores
a) Between 60 and 70? Answer: 44.05%
b) Between 70 and 80? Answer: 33.45\%
c) Between 80 and 90? Answer: $\mathbf{6 . 3 8 \%}$
d) Less than 60? Answer: $\mathbf{1 5 . 8 6 \%}$
e) More than 90? Answer: 0.29\%
f) Find the cut-off point for F if the bottom 1% will be getting " F ". Answer: 49.39
g) Find the cut-off point for "A" if the top 2% will be getting "A" Answer: 84.43
h) Find the score for Q1 Answer: $\mathbf{6 2 . 6 0}$
i) Find the P_{30} Answer: 63.80
j) Find the P_{70} Answer: 72.18
k) Find the P_{50} Answer: 68
2) The average time for workers to finish a specific task is 38 minutes with a standard deviation 8 minutes. If that data are normally distributed then what percentage of workers finishes the task;
a) Between 30 and 36 minutes Answer: 24.26\%
b) Less than 42 minutes Answer: $\mathbf{6 9 . 1 5 \%}$
c) More than 40 minutes Answer: $\mathbf{4 0 . 1 3 \%}$
d) Within 4 minutes of the mean Answer: $\mathbf{3 8 . 3 \%}$
e). Find the time that separates the fastest $\mathbf{1 0 \%}$ of workers finishing this task.

Note: this is a cut-off point and fastest means the bottom 10%
TI-83/84 2nd \rightarrow DISTR \rightarrow Option 3 then invNorm $(0.10,38,8) \rightarrow$ enter
answer: $X=27.74$
f). Find the time that separates the slowest $\mathbf{1 5 \%}$ of workers finishing this task.

Note: this is a cut-off point and slowest means the top $\mathbf{1 5 \%}$

TI-83/84 2nd \rightarrow DISTR \rightarrow Option 3 then $\quad \operatorname{invNorm}(0.85,38,8) \rightarrow$ enter \quad answer: $X=46.29$

Using formula to find answers for part e and f

Note:

Also rather using TI-83/84 to find cut-off point, we can use formula $x=\mu+\sigma z$ and z value $=-1.28$ form page 3 of the table for bottom $\mathbf{1 0 \%} \quad x=38+8(-1.28)=27.76$

Note:
Also rather using TI-83/84 to find cut-off point, we can use formula $x=\mu+\sigma z$ and z value $=-1.28$ form page 3 of the table for top $\mathbf{1 5 \%} \quad x=38+8(1.0364)=46.29$

Find the time that separates the fastest 10% of workers finishing this task. Answer: 27.76

$$
x=\mu+\sigma z \Rightarrow x=38+8(-1.28)=27.76
$$

Find the time that separates the slowest 15% of workers finishing this task. Answer: 46.32

$$
x=\mu+\sigma z \Rightarrow x=38+8(1.04)=46.32
$$

3) The cholesterol level for adult males of a specific racial group is approximately normally distributed with a mean of $4.8 \mathrm{mmol} / \mathrm{L}$ and a standard deviation of $0.6 \mathrm{mmol} / \mathrm{L}$.
a) What is the probability that a person has moderate risk if his cholesterol level is more than 1 but less than 2 standard deviations above the mean: Answer: 13.59\%
b) A person has high risk if his cholesterol level is more than 2 standard deviations above the mean. What proportion of the population has high risk Answer: 2.28\%
c) A person within 1 standard deviation of the mean has normal cholesterol risk What proportion of the population has high risk Answer: 31.73\%
d) What is the $90^{\text {th }}$ percentile of the distribution (the cholesterol level that exceeds 90% of the population)? Answer: 5.569
e) What is the $70^{\text {th }}$ percentile of the distribution, i.e., the cholesterol level that exceeds 70% of the population? Answer: 5.11
4). Given the average height of adult male in United States is 65 inches with standard deviation of 8 inches and if the minimum and maximum acceptable heights for being recruited by ARMY is between 55 and 85 inches, then find the percentage of adult male that may be rejected because of their heights? Answer: 11.19
4) The average life of a certain type of motor is 10 years, with a standard deviation of 2 years. Assume that the lives of the motors follow a normal distribution
a) What percentage of motors last longer than 15 years? Answer: . $0062=.62 \%$
b) What percentage of motors last less than 7 years? Answer: $0.668=6.68 \%$
c) If the manufacturer is willing to replace only 3% of the motors that fail, how long a guarantee should he offer? Answer: 6.24 years
d) If the manufacturer is willing to replace only 5% of the motors that fail, how long a guarantee should he offer? Answer: ? 6.71 years
5) A company pays its employees an average wage of $\$ 8.25$ an hour with a standard deviation of 0.80 cents. If the wages are approximately normally distributed, determine
a. the proportion of the workers getting wages between $\$ 6.75$ and $\$ 10.75$ an hour; Answer: $\mathbf{9 6 \%}$
b. the minimum wage of the highest 5%. Answer: $\$ 9.57$
c. the minimum wage of the lowest 10% : Answer: $\$ 7.23$
d. What is the $90^{\text {th }}$ percentile of the distribution Answer: $\$ 9.27$
e. What is the $30^{\text {th }}$ percentile of the distribution Answer: $\$ 7.83$
f. What is the $75^{\text {th }}$ percentile of the distribution Answer: $\mathbf{\$ 8 . 7 9}$

Extra Practice: Problems F, G 1-10 from practice problem part II on pages 4, 5.

