Abe Mirza

# Part IV

# Hypothesis Testing

# 7 – Step Process

- 1. Starting Claim, Opposite Claim
- 2. Standard Set –up, H<sub>0</sub>, H<sub>1</sub>
- **3. Establishing Guideline**
- 4. Collecting Sample (Test Statistics)
- **5. Drawing Conclusion**
- 6. Comment
- 7. P-value

| Topics                            | Page |
|-----------------------------------|------|
| Learning Objectives               | 2    |
| General Outline                   | 3    |
| Formuls                           | 5    |
| Large Sample Size (about Mean)    | 6    |
| Small Sample Size (about Mean)    | 8    |
| Proportion                        | 10   |
| <b>Two Independent Population</b> | 12   |
| Paired Samples                    | 14   |
| Multinomial                       | 17   |
| Test of Independence              | 19   |

### Learning Objectives

What do we hypothesize? **Population Parameter** such as **Mean** ( $\mu = ?$ ) or **Proportion** (P = ?) Why do we hypothesize? To investigate any claim about **Population Parameter** Is **average** weight of cereal boxes 24 oz? Do **average** life of Die hard batteries exceed 60 months? Is less than **10%** of drivers text while driving? Will more than **45%** of people vote in the next election?

### **7-Step Process**

From topics review you **must** read **step 1** and then look at the page one of **work sheet** to see how **step 1** is done and then go to page 2 of **work sheet** do step 1 and check your answer on the third page. Do this for every step of hypothesis testing.

The first 3 steps are setting the problem in the right format.

**Step 1**: Finding what the starting claim is. Is that about the average or proportopn(%); Write the starting claim as **SC** and try to oppose it as **OC** in statistical notation

**Step 2**: Rewriting **SC** and **OC** as  $H_0$  and  $H_1$ 

 $H_0$  (**must** have one of the = or  $\leq$  or  $\geq$  sign) and  $H_1$  (**must** have one of the  $\neq$  or < or > sign). Draw the appropriate graph as Left tail, two tails or right tail.

**Step 3:** Finding critical value or values by using the t- table,. Critical value depends on three factors a) significance level ( $\alpha$ )

**b)** being one-tailed or two-tailed.

c) sample size (Hint: if n > 30 use the bottom of the table otherwise use the top.)

Step 4: (called Test Statistics) is using the evidence from our sample and converting that to Z or t score that can be done by formula or Ti

**Step 5:** (called conclusion) is about step 2 to see if to accept or reject  $H_0$ .

Step 6: (called comment) is about step 1 to see if to accept or reject SC (Starting Claim).

**Step 7:** (**p-value**) to read the **p-value** from **TI** screen on step 4 and to find out if it is smaller or larger that significance level ( $\alpha$ ).

After finishing all steps in quick start you work on practice problems. For Multinomial topics you need to use table page for Chi-Square

#### 4 Quizzes for Part 4

Quiz 12: This quiz covers pages 3 through 9

Quiz 13: This quiz covers pages 3 through 11

Quiz 14: This quiz covers pages 3 through 16

Quiz 15: This quiz covers pages 3 through 18

# **General Outline**

### 7-Steps of hypothesis testing

| <i>1</i> ) | From the problem write ( SC: Starting | claim) and then write its (OC: Opposite Claim) |
|------------|---------------------------------------|------------------------------------------------|
|            | in statistical notation.              |                                                |
|            |                                       | SC                                             |

|           |                                                                                          | 50              | 00                      |  |
|-----------|------------------------------------------------------------------------------------------|-----------------|-------------------------|--|
| Examples: | Average life of "Diehard" batteries exceeds 60 months                                    | $\mu > 60$      | $\mu \leq 60$           |  |
|           | Average time to do a certain task is less than 25 minutes                                | $\mu$ < 25      | $\mu \geq 25$           |  |
|           | Average net weight of a certain cereal is 24 oz.                                         | $\mu = 24$      | $\mu \neq 24$           |  |
|           | Less than <b>13%</b> of drivers text while driving.                                      | <b>P</b> < 0.10 | $P \ge 0.13$            |  |
|           | At least <b>55%</b> of college students have Facebook account.                           | P ≥0.55         | <b>P</b> < 0.55         |  |
|           | At most 21% of tablets in the market are made by Samsung                                 | P ≤0.21         | <b>P</b> > <b>0</b> .21 |  |
|           | . <b>Average</b> life of Diehard( $\mu_1$ ) batteries is longer that Everlast( $\mu_2$ ) | $\mu_1 > \mu_2$ | $\mu_1 \leq \mu_2$      |  |

2) The next step is rewriting SC, and OC in a new set up called

**H**<sub>0</sub> (Null Hypothesis), and **H**<sub>1</sub> (Alternative Hypothesis):

As how to change SC, and OC to  $H_0$ , and  $H_1$ , you need to follow the next rule remembering that  $H_0$  (Null Hypothesis) **must** contain some form of equality, and  $H_1$  (Alternative Hypothesis) **must** contain **no** form of equality. The mathematical setup is explained right below,

| H <sub>0</sub> (Null Hypothesis): (contains equal sign)            | = | or | $\geq$ | or | $\leq$ |
|--------------------------------------------------------------------|---|----|--------|----|--------|
| H <sub>1</sub> (Alternative Hypothesis): (contains not equal sign) | ¥ | or | <      | or | >      |

There are **three-possibilities** for setting up the hypothesis (a left-tailed test, two-tailed, right-tailed). **Hint**: if  $H_1$ :  $\mu <$  it is a left-tailed test

- if  $H_1$ :  $\mu \neq$  it is a two-tailed test
- if **H**<sub>1</sub>:  $\mu$  > it is a right-tailed test

Label the region, as A (Accepting  $H_0$ ), or R (Rejecting  $H_0$ ) Rejections or acceptances labels are based on  $H_0$ .

| three -possibilities | $\mathbf{H_0:}  \mu \geq 60$       | $\mathbf{H_0}: \ \mu = 60$    | $\mathbf{H_0}:  \mu \leq 60$       |  |
|----------------------|------------------------------------|-------------------------------|------------------------------------|--|
|                      | <b>H</b> <sub>1</sub> : $\mu < 60$ | $\mathbf{H}_1: \ \mu \neq 60$ | <b>H</b> <sub>1</sub> : $\mu > 60$ |  |
| left-tailed (LTT)    |                                    |                               |                                    |  |
| two-tailed, (TTT)    | (LTT)<br>P A                       | (TTT)<br>A                    | A ( <b>RTT</b> )<br>R              |  |
| right-tailed (RTT)   | <u>60</u>                          | <u>60</u>                     | 60                                 |  |

 What is Critical value(s) and how to find it? Critical value(s) is limit(s) or boundary(ies) that if it is exceeded (by our sample data) then H<sub>0</sub> will be rejected.

OC

How to find it? By looking up t- table, when we know the followings;

a) Significance level = α (Alpha Level) = Critical Region = Critical area = type I error In other words the determining the probability of rejectiong H<sub>0</sub>, when H<sub>0</sub> is true. It is like finding some one to be quilty when he is innocent. So not that to let that happen we choose significance level or α value to be small between 1% to 10%. Hint: If significance level = α is not given assume α = .05 = 5% Critical Region is also the area designated by Significance level and is shown by α or R Also remember if our sample size is 30 or less, then on table p.4 use df = degree of freedom = n-1

#### b) One-tailed or two-tailed, and

For sample sizes n > 30 then use **last row** of **table p.4** to find the critical value(s)..



4. Compute Test Statistics (based on sample information) from the following formulas.



Two independent population  $\mu_1, \mu_2$ 

**TI-83/84** stat  $\rightarrow$  test  $\rightarrow$  Option 3

e.  $t = \frac{\sqrt{n}(\overline{d} - \mu_d)}{s_d}$ 

d.  $Z = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{n}}}$ 

For Paired Samples

**TI-83/84** Input d values in  $L_1 \rightarrow stat \rightarrow test \rightarrow Option 2 \rightarrow data \rightarrow$ 

f. 
$$\chi^2 = \sum \frac{(O-E)^2}{E}$$
 Observed, Expected, for Multinomial or Independency Test  
**TI-83/84** Input Observed values into L1 and Expected Values into L2 and then go to the top of L3 to  
write  $(L_1 - L_2)^2 / L_2 \rightarrow stat \rightarrow Calc \rightarrow Option 1 \rightarrow L_3$  (the answer is  $\sum x$ )

**`5**) Conclusion: The decision is made by comparing Test Statistics with Critical value, and find where the test statistics falls (inside the CR: Critical Region or not);

If **Test Statistics** falls inside the **CR**: Critical **R**egion the decision is to **Reject H**<sub>0</sub> or saying that there is sufficient evidence to Reject  $H_0$ . If it falls outside the **CR**: Critical **R**egion the decision is to **Fail to Reject H**<sub>0</sub> or **Accept**  $H_0$  that there is not sufficient evidence to Reject  $H_0$ . When the result of a hypothesis test are determined to be significant then we reject the null hypotheses.

6) Comment: Decision as to accept or reject SC( the stated claim)? Two possibilities:

- 1) If **SC** and  $H_0$  are the same then any decision you make for  $H_0$  will be the same for **SC** and you write that as your comment.
- 2) If **SC** and  $H_0$  are different then whatever decision you make for  $H_0$ , you should make the opposite decision of that for **SC** and you write that as your comment.

7) **P-value:** It is the **area corresponding to the test statistics** and is always shown on the display of **TI-8 3/84** as P = (when you compute the test statistics). Basically it is the minimum  $\alpha$  - value that is needed to reject the Null hypothesis **H**<sub>0</sub>. As a rule you reject reject the Null hypothesis when **P-value** is smaller than  $\alpha$  - value

### **Type I and Tpe II errors**

Remember that we do not know for certain that if  $H_0$  is true or false but after the test is set up, data collected, then we either Accept  $H_0$ : or Reject  $H_0$ :

The table below summarizes all possible scenarios that might happen when testing procedure is completed.

|                         | H <sub>0</sub> : True                                   | H <sub>0</sub> : False                                |
|-------------------------|---------------------------------------------------------|-------------------------------------------------------|
| Accept H <sub>0</sub> : | Correct Decision                                        | Type II error or called Beta( $\beta$ )               |
| Reject H <sub>0</sub> : | Type <i>I</i> error or called <b>Alpha</b> ( $\alpha$ ) | Correct Decision = <b>Power</b> of a test $1 - \beta$ |

#### Large Samples about Mean

**Case 1.** Average life of "Die Long" batteries exceeds 60 months. A sample of 64 batteries had an average life of 63 months and st. dev. of 10 months. Let  $\alpha = .05$ 



Conclusion: Accept or reject  $H_0$ ? Inside *CR* then reject  $H_0$ 

**Comment:** Accept or reject **SC**? Accept that the average life of batteries exceeds 60 months. **P-value:** 0.008 less than  $\alpha = .05$  reject Ho

**Case 2.** Average life of "Die Long" batteries is less than 60 months. A sample of 64 batteries had an average life of 58 months and st. dev. of 10 months. Let  $\alpha = 0.10$ 

SC:  $\mu < 60$  H<sub>0</sub>:  $\mu \ge 60$  Hint: Use H<sub>1</sub> to determine if it is LTT, TTT or RTT test. OC:  $\mu \ge 60$  H<sub>1</sub>:  $\mu < 60$  Note:  $\mu$  in H<sub>1</sub> is less than, then it is a LTT When  $\alpha = .10$ , n > 30 and one -tailed test then by using bottom row of t- table. R

Critical value = 
$$CV=Z = -1.282$$





**Conclusion:** Accept or reject  $H_0$ ? Inside *CR* then reject  $H_0$ **Comment:** Accept or reject **SC**? Accept that the **average** life of batteries is **less than 60** months **P-value:** 0.0548 less than  $\alpha = 0.10$  reject Ho

**Case 3.** Average life of "Die Long" batteries is different than 60 months. A sample of 64 batteries had an average life of 62 months and st. dev. of 10 months. Let  $\alpha = .05$ 

SC:  $\mu \neq 60$  $\mathbf{H_0}: \mu = 60$ Hint: Use  $\mathbf{H_1}$  to determine if it is LTT, TTT or RTT test.OC:  $\mu = 60$  $\mathbf{H_1}: \mu \neq 60$ Note:  $\mu$  in  $\mathbf{H_1}$  is not equal, then it is a TTT

When  $\alpha = .05$ , n > 30 and two –tailed test then by using bottom row of page t- table.



Conclusion: Accept or reject H<sub>0</sub>? Not inside CR then Fail to Reject H<sub>0</sub> or Accept H<sub>0</sub>

Comment: Accept or reject SC? Reject that the average life of batteries is different than 60 months

**P-value:** 0.1096 more than  $\alpha = 0.05$  accept Ho

### **Small Samples about Mean**

**Case 4.** Average life of "Die Long" batteries exceeds 60 months. A sample of 25 batteries had an average life of 63 months and st. dev. of 10 months. Let  $\alpha = .05$ 

| <b>SC</b> : $\mu > 60$    | $\mathbf{H}_{0}$ : $\mu \leq 60$ | Hint: Use $H_1$ to determine if it is LTT, TTT or RTT test   |
|---------------------------|----------------------------------|--------------------------------------------------------------|
| <b>OC</b> : $\mu \leq 60$ | $\mathbf{H}_1: \mu > 60$         | Note: $\mu$ in H <sub>1</sub> is more than, then it is a RTT |

When  $\alpha = .05$ , n < 30 and one –tailed test then by using 24<sup>th</sup> row of page t- table. Critical value = CV = t = 1.711



**Conclusion:** Accept or reject  $H_0$ ? Not inside CR then Fail to Reject  $H_0$  or Accept  $H_0$ Comment: Accept or reject SC? Reject that the average life of "Die Easy" batteries exceeds 60 months P-value: 0.0733 more than  $\alpha = 0.05$  accept Ho

**Case 5.** Average life of "Die Long" batteries is less than 60 months. A sample of 9 batteries had an average life of 54 months and st. dev. of 10 months. Let  $\alpha = .10$ 

| <b>SC</b> : | $\mu < 60$    | H <sub>0</sub> : $\mu \ge 60$      | <b>Hint</b> : Use $H_1$ to determine if it is LTT, TTT or RTT test |
|-------------|---------------|------------------------------------|--------------------------------------------------------------------|
| <b>OC</b> : | $\mu \geq 60$ | <b>H</b> <sub>1</sub> : $\mu < 60$ | Note: $\mu$ in H <sub>1</sub> is less than, then it is a LTT       |

When  $\alpha$  = .10 , n < 30 and one –tailed test then by using 8<sup>th</sup> row of page t- table. Critical value =  $\rm CV=t~=-1.397$ 



А

0

R

1.711

Test Statistics = 
$$z = \frac{\sqrt{n}(\overline{x} - \mu)}{s} = \frac{\sqrt{9}(54 - 60)}{10} = -1.8$$
 Falls inside CR

**TI-83/84** stat  $\rightarrow$  test  $\rightarrow$  Option 2



Conclusion: Accept or reject H<sub>0</sub>? Inside *CR* then reject Ho Comment: Accept or reject SC? Accept that the average life of "Die Easy" batteries is less than 60 months

**P-value:** 0.05478 less than  $\alpha = 0.10$  reject Ho

**Case 6.** Average life of "Die Long" batteries is different than 60 months. A sample of 16 batteries had an average life of 66 months and st. dev. of 10 months. Let  $\alpha = .02$ 

SC:  $\mu \neq 60$  H<sub>0</sub>:  $\mu = 60$  Hint: Use H<sub>1</sub> to determine if it is LTT, TTT or RTT test OC:  $\mu = 60$  H<sub>1</sub>:  $\mu \neq 60$  Note:  $\mu$  in H<sub>1</sub> is not equal, then it is a TTT When  $\alpha = .02$ , n < 30 and two -tailed test then by using 15<sup>th</sup> row of page t- table. Critical value = $C V = t = \pm 2.602$ 

Test Statistics = 
$$t = \frac{\sqrt{n}(\overline{x} - \mu)}{s} = \frac{\sqrt{16}(66 - 60)}{10} = 2.4$$
 Falls not inside CR  
TI-83/84 stat  $\rightarrow$  test  $\rightarrow$  Option 2



**Conclusion:** Accept or reject  $H_0$ ? Not inside CR then Fail to Reject  $H_0$  or Accept  $H_0$ Comment: Accept or reject SC? Reject that the average life of "Die Easy" batteries is different than 60 months. P-value: 0.0298 more than  $\alpha = 0.02$  accept Ho

**Case 7)** Leno Co. claims that the mean life of their batteries is 60 months. Test this claim with  $\alpha = 0.02$  if a sample of 6 batteries has a life of 62, 58, 59, 64, 63, 61, months.

SC:  $\mu = 60$  H<sub>0</sub>:  $\mu = 60$  Hint: Use H<sub>1</sub> to determine if it is LTT, TTT or RTT test OC:  $\mu \neq 60$  H<sub>1</sub>:  $\mu \neq 60$  Note:  $\mu$  in H<sub>1</sub> is not equal, then it is a TTT When  $\alpha = .02$ , n < 30 and two -tailed test then by using 5<sup>th</sup> row of page 4 of t- table. Critical value =  $CV = t = \pm 3.365$ 



-2.602

0

2.602



Conclusion: Accept or reject H<sub>0</sub>? Not inside CR then Fail to Reject H<sub>0</sub> or Accept H<sub>0</sub>

**Comment:** Accept or reject **SC**? Fail to **Reject** or **Accept** that the **average** life of "Die Easy" batteries **exceeds 60** months

**P-value:** 0.0272 more than  $\alpha = 0.02$  accept Ho

#### Part 4 Topics Review 11/12/2013

## **Proportion**

Case 8. At  $\alpha = .05$  test that 85% of stat students pass the course. Out of 200 students only 156 students passed the course.

| <b>SC</b> : <b>P</b> = $.85$                                                                                                      | $\mathbf{H}_0: \mathbf{P} = .8$               | <b>Hint</b> : Use $H_1$ to determine                                                            | e if it is LTT ,TTT                                 | or RTT test                        |    |      |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------|----|------|
| <b>OC</b> : <b>P</b> ≠ .85                                                                                                        | $\mathbf{H}_1: \mathbf{P} \neq .8$            | 5 Note: $P$ in H <sub>1</sub> is not equal,                                                     | then it is a <b>TTT</b>                             |                                    |    |      |
| When $\alpha = .05$ , n > 30 a                                                                                                    | nd two -tailed                                | est then by using bottom row of p                                                               | age <b>t- table.</b>                                | R                                  | А  | R    |
| <b>Critical value =</b> CV = 2                                                                                                    | Z = ± 1.96                                    |                                                                                                 |                                                     | - 1.96                             | 0  | 1.96 |
| Sample proportion = ,                                                                                                             | $\hat{p} = \frac{156}{200} = .78$             |                                                                                                 |                                                     |                                    |    |      |
| Test Statistics $= z =$                                                                                                           | $\frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$ | $= z = \frac{.7885}{\sqrt{\frac{.85(185)}{200}}} = \frac{07}{0.02523}$                          | $\frac{1}{5} = -2.77$ Falls                         | inside CR                          |    |      |
| TI-83/84 stat $\rightarrow$ tes                                                                                                   | t  ightarrow Option                           | 5                                                                                               |                                                     |                                    |    |      |
| Step 1                                                                                                                            |                                               | Step 2                                                                                          | Ste                                                 | <u>ep 3</u>                        |    |      |
| EDIT CALC <b>M</b><br>1:2-Test<br>2:T-Test<br>3:2-SampZTe:<br>4:2-SampTTe:<br><b>50</b> 1-PropZTe:<br>6:2-PropZTe:<br>74ZInterval | <b>st</b><br>st<br>st<br>st                   | l-PropZTest<br>po:.85<br>x:156<br>n:200<br>prop <mark>#po</mark> <po>po<br/>Calculate Draw</po> | 1-Prop<br>prop≠<br>z=-2.<br>p=.00<br>p=.78<br>n=200 | ZTest<br>.85<br>7724131<br>5564352 | 25 |      |

Conclusion: Accept or reject H<sub>0</sub>? Inside CR then reject Ho

Comment: Accept or reject SC? Reject that 85% of stat students pass the course.

**P-value:** 0.005564 less than  $\alpha = 0.05$  reject Ho

Case 9. At  $\alpha = .10$  test that more than 85% of stat students pass the course. Out of 200 students only 172 students passed the course.

| <b>SC</b> : $P > 0.85$           | $H_0: P \le 0.85$                       | Hint: Use H <sub>1</sub> to determine if it is LTT, TTT or RTT test |
|----------------------------------|-----------------------------------------|---------------------------------------------------------------------|
| <b>OC</b> : <b>P</b> $\leq$ 0.85 | <b>H</b> <sub>1</sub> : <b>P</b> > 0.85 | Note: $P$ in H <sub>1</sub> is more than, then it is a RTT          |

When  $\alpha = .10$ , n > 30 and one –tailed test then by using bottom row of page t- table. Critical value = CV = Z = 1.282





**Part 4 Topics Review** 11/12/2013

1.282



Conclusion: Accept or reject H<sub>0</sub>? Not inside CR then Fail to Reject H<sub>0</sub> or Accept H<sub>0</sub>

Comment: Accept or reject SC? Reject that more than 85% of stat students pass the course.

**P-value:** 0.3960 more than  $\alpha = 0.10$  accept Ho

**Case 10.** Prior to election day, an opinion poll among registered voters indicate that 433 voters will vote for incumbent President and 367 will not., Can it be claimed at  $\alpha = 0.01$  that incumbent President will win the majoarity of the votes(getting above 50% of the vote?

| <b>SC</b> : <b>P</b> $> 0.50$    | <b>H</b> <sub>0</sub> : <b>P</b> $\leq$ 0.50 | <b>Hint</b> : Use $H_1$ to determine if it is LTT, TTT or RTT test |
|----------------------------------|----------------------------------------------|--------------------------------------------------------------------|
| <b>OC</b> : <b>P</b> $\leq$ 0.50 | <b>H</b> <sub>1</sub> : <b>P</b> > 0.50      | Note: <i>P</i> in H <sub>1</sub> is more than, then it is a RTT    |

When  $\alpha = 0.01$ , n > 30 and one -tailed test then by using bottom row of page t- table. Critical value = CV = Z = 2.326



Step 3

0

2.326



Step 2

Conclusion: Accept or reject H<sub>0</sub>? Test Statistics is too close to Critical value, so decision is inconclusive

Comment: Accept or reject SC? Inconclusive as who the winner will be.

**P-value:** 0.098 more than  $\alpha = 0.001$  Inconclusive.

**Part 4 Topics Review** 11/12/2013

Step 1

# **Difference of Two Independent Population Means**

Case 11 : Test at the 1% significance level whether the average life of Diehard batteries is longer than Everlast. brand. Sample from these two type of batteries are as such:

| Die Hard                                                                                           | $(\mu_1)$                                                    | $n_{1} = 44$                                                                 | $\overline{x}_1 = 51.8$                   | $s_1 = 8.5$                                                                   |                        |         |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|------------------------|---------|
| Everlast                                                                                           | $(\mu_2)$                                                    | $n_2 = 36$                                                                   | $\overline{x}_2 = 47.4$                   | $s_2 = 10.7$                                                                  |                        |         |
| <b>SC</b> : $\mu_1 > \mu_2$                                                                        | $\mathbf{H_0}: \ \mu_1 \leq$                                 | $\mu_2$ <b>H</b> <sub>0</sub> : $\mu_1 - \mu_2$                              | $_{2} \leq 0$ <b>Hint</b> : Us            | se $H_1$ to determine if it is                                                | LTT ,TTT or R          | TT test |
| <b>OC:</b> $\mu_1 \leq \mu_2$                                                                      | $\mathbf{H}_1: \ \mu_1 >$                                    | $\mu_2$ <b>H</b> <sub>1</sub> : $\mu_1 - \mu_2$                              | $\mu_2 > 0$ Note: $\mu_1$                 | $-\mu_2$ in H <sub>1</sub> is more than, t                                    | hen it is a <b>RTT</b> |         |
| When $\alpha = .01$ , n > 3                                                                        | 0 and one –tai                                               | iled test then by using                                                      | bottom row of page                        | e t- table.                                                                   |                        |         |
| <b>Critical value</b> = CV                                                                         | V = Z = 2.326                                                |                                                                              |                                           | ~                                                                             | 0                      | 2.326   |
| CPoint Estimate                                                                                    | $(\overline{x}_1 - \overline{x}_2) =$                        | (51.8 - 47.4) = 4.4                                                          |                                           |                                                                               |                        |         |
| $z = \frac{(\overline{x}_1 - \overline{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} =$ | $=\frac{(51.8-47.4)}{\sqrt{\frac{8.5^2}{44}+\frac{10}{44}}}$ | $\frac{4)-0}{0.7^2} = \frac{4.4}{\sqrt{1.6420+3}}$                           | $\frac{4.4}{2.1960}$                      | = 2.003 Falls no                                                              | ot inside CR           |         |
| TI-83/84 stat $\rightarrow$                                                                        | test $\rightarrow$ Op                                        | otion 3                                                                      | 2                                         | Stop 2                                                                        |                        |         |
| EDIT CALC<br>1:2-Test<br>2:T-Test<br>4:2-SampZ<br>4:2-SampT<br>5:1-PropZ<br>6:2-PropZ<br>74ZInterv | Test<br>Test<br>Test<br>Test<br>Test<br>al                   | 2-SamPZ<br>↑σ2:10.<br>x1:51.<br>n1:44<br>x2:47.<br>n2:36<br>μ1:≠μ2<br>Calcul | Test<br>7<br>8<br>4<br>4<br>4<br>ste Draw | 2-SampZTes<br>µ1>µ2<br>z=2.00366<br>p=.022553<br>X1=51.8<br>X2=47.4<br>↓n1=44 | st<br>52259<br>3056    |         |

Conclusion: Accept or reject H<sub>0</sub>? Not inside CR then Fail to Reject H<sub>0</sub> or Accept H<sub>0</sub>

**Comment**: Accept or reject **SC**? Reject that the average life of Diehard batteries is longer than Everlast brand. **P-value:** 0.02256 more than  $\alpha = 0.01$  accept Ho **Case 12 :** A researcher wants to test if the mean GPA of all male and female college students who participate in sports are different. She took a random sample of 33 male students and 38 female students who are involved in sports. She found out the mean GPAs of the two groups to be 2.62 and 2.74, respectively, with the corresponding standard deviations equal to .43 and .38. At 2% significance level, test whether the **mean** GPAs of the two populations **are different**.

SC:  $\mu_m \neq \mu_f$   $H_0: \mu_m = \mu_f$   $H_0: \mu_m - \mu_f = 0$  Hint: Use H<sub>1</sub> to determine if it is LTT, TTT or RTT test OC:  $\mu_m = \mu_f$   $H_1: \mu_m \neq \mu_f$   $H_1: \mu_m - \mu_f \neq 0$  Note:  $\mu_m - \mu_f$  in H<sub>1</sub> is not equal then it is a TTT

When  $\alpha = .02$ , n > 30 and two -tailed test then by using bottom row of page t- table. Critical value =  $CV = Z = \pm 2.326$ 



 $z = \frac{(2.62 - 2.74) - 0}{\sqrt{\frac{.43^2}{33} + \frac{.38^2}{38}}} = \frac{-.12}{\sqrt{.0094}} = -1.24$  Falls not inside CR

**TI-83/84** stat  $\rightarrow$  test  $\rightarrow$  Option 3

Step 1

Step 2

Step 3



Conclusion: Accept or reject H<sub>0</sub>? Not inside CR then Fail to Reject H<sub>0</sub> or Accept H<sub>0</sub>

**Comment**: Accept or reject **SC**? Reject that the **mean** GPAs of the two populations **are different**. **P-value:** 0.2159 more than  $\alpha = 0.02$  accept Ho

# **Paired Samples**

Objective: To test if a course/program/treatment/medication is effective as it promises?

**Examples:** Super Course to increase the self confidence Weight reduction program Pain relief medications SAT prep. class New medication is not effective

The difference for one person who participates in the course/program/treatment/medication

**d** = **A**-**B** = Score After – Score Before

 $\mu_d$  = Average difference for all people who may participate in the course/program/treatment/medication

| <b>B</b> = <b>B</b> efore |                                              | A = After | SC             |
|---------------------------|----------------------------------------------|-----------|----------------|
|                           | Higher results after                         |           |                |
|                           | Super Course to increase the self confidence |           | $\mu_d > 0$    |
|                           | SAT prep. Class to increase the scores       |           | $\mu_d > 0$    |
|                           | New medicine to increase blood flow          |           | $\mu_d > 0$    |
|                           | New treatment to increase body metabolism    |           | $\mu_d > 0$    |
|                           | Lower results after                          |           |                |
|                           | Weight reduction program                     |           | $\mu_d < 0$    |
|                           | Pain relief medications                      |           | $\mu_d < 0$    |
|                           | New drug to reduce blood pressure            |           | $\mu_d < 0$    |
|                           | difference or no difference in results       |           |                |
|                           | New drug is not effective                    |           | $\mu_d = 0$    |
|                           | New drug is effective                        |           | $\mu_d \neq 0$ |

**2)**  $H_0: \mu_d$  $H_1: \mu_d$  3) To find critical value based on df = n -1Use page 3 of the table

**4)** Test Statistics = 
$$t = \frac{\sqrt{n}(\overline{d} - \mu_d)}{s_d}$$

5) Conclusions

6) Comment

### **Paired Samples**

**Case 13**. A course is intended *to increase* the average sales of salespersons, a random sample of six salespersons and their corresponding sales before and after the course is tabulated as such:

| Before  | 12 | 18 | 25 | 9  | 14 | 16 |                                                               |
|---------|----|----|----|----|----|----|---------------------------------------------------------------|
| After   | 18 | 24 | 24 | 14 | 19 | 20 |                                                               |
| d=A - B | 6  | 6  | -1 | 5  | 5  | 4  | $\Sigma d = 25  \overline{d} = 25/6 = 4.17 \qquad s_d = 2.64$ |

At  $\alpha = 1\%$ , can you conclude that attending this course increases the sales?

 $\mu_d$  = Average difference in sales after taking the course.

| <b>SC</b> : After the course the sales is higher        | $\mu_d > 0$    | $H_0: \mu_d \leq 0$ |
|---------------------------------------------------------|----------------|---------------------|
| <b>OC</b> : After the course the sales is same or lower | $\mu_d \leq 0$ | $H_1: \mu_d > 0$    |

When  $\alpha = .01$ , n < 30 and one -tailed test then by using 5<sup>th</sup> row of page of t- table.

Critical value = CV = t = 3.365



$$t = \frac{\sqrt{n}(\overline{d} - \mu_d)}{s_d} = \frac{\sqrt{6}(4.17 - 0)}{2.64} = 3.87$$
 Falls inside CR

**TI-83/84** Input d values in  $L_1 \rightarrow stat \rightarrow test \rightarrow Option 2 \rightarrow data$ 



Conclusion: Accept or reject Ho? Inside CR then reject Ho

Comment: Accept or reject SC? Accept that attending this course increases the sales.

**P-value:** 0.005899 less than  $\alpha = 0.01$  reject Ho

**Case 14**: A new medication claims that it reduces the pain of arthritis. The following table gives the pain reduction measurement score of eight patients before and after the medication is administrated.

| Before  | 97 | 72 | 93 | 110 | 78  | 69 | 115 | 72  |                                                             |
|---------|----|----|----|-----|-----|----|-----|-----|-------------------------------------------------------------|
| After   | 93 | 75 | 89 | 91  | 65  | 70 | 90  | 64  |                                                             |
| d=A - B | -4 | 3  | -4 | -19 | -13 | 1  | -25 | - 8 | $\Sigma d = -69  \overline{d} = -69/8 = -8.625  s_d = 9.75$ |

At  $\alpha = 5\%$ , can you conclude that new medication reduces arthritis pain?

 $\mu_d$  = Average difference in pain after taking the medication

- **SC**: After the new medication the pain is lower  $\mu_d < 0$   $H_0: \mu_d \ge 0$
- **OC**: After the new medication the pain is same or higher:  $\mu_d \ge 0$   $H_1: \mu_d < 0$

When  $\alpha = .05$ , n < 30 and one –tailed test then by using 7<sup>th</sup> row of page of t- table.

Critical value = CV = t = -1.895

$$t = \frac{\sqrt{n}(\bar{d} - \mu_d)}{s_d} = \frac{\sqrt{8}(-8.625 - 0)}{9.75} = -2.5$$
 Falls inside CR





Conclusion: Accept or reject H<sub>0</sub>? Inside CR then reject Ho

Comment: Accept or reject SC? Accept that after the new medication reduces of arthritis pain.

**P-value:** 0.020459 less than  $\alpha = 0.05$  reject Ho

# **Multinomial**

**Objective:** To test if **O**bserved values/percentages meet the Expected values/percentages? In these hypotheses the SC and  $H_0$  are the same and both represent the expectations.

To find the critical value we use **Chi-square** ( $\chi^2$ ) table.

it is always a right tail test starting at zero. df = k - 1 where k = # of groups.

Example K=5 df = 5-1 = 4 and let's  $\alpha = .01$  then critical value = CV = 13.277.

The Test statistics formula =**TS** =  $\chi^2 = \sum \frac{(O-E)^2}{E}$  =



Hint: There are no SC and OC. We start H<sub>0</sub> with by writing what the expected values or percentages are.

Case 15: Abe Claims that generally in his class grades distribution is as such A: 20%, B: 24%, C: 28%, D:16%, F: 12% " Test Abe's claim at 10% significance level based on

| latest data recored from his st | tat classes last | from a sample of 75 students. |
|---------------------------------|------------------|-------------------------------|
|                                 |                  |                               |

| Grade                                                                            | Α  | В  | С  | D  | F | Total |
|----------------------------------------------------------------------------------|----|----|----|----|---|-------|
| <b>O(Observed)</b> =Students                                                     | 16 | 18 | 20 | 14 | 7 | 75    |
| To find the even extend velocity we multiply the given percentages by total (75) |    |    |    |    |   |       |

To find the expected values we multiply the given percentages by total (75).

| Grade                 | Α                    | В                    | С                    | D                    | F                  | Total                  |
|-----------------------|----------------------|----------------------|----------------------|----------------------|--------------------|------------------------|
| O(Observed)=Students  | 16                   | 18                   | 20                   | 14                   | 7                  | 75                     |
| E(Expected) =Students | .2(75)               | .24(75)              | .28(75)              | .16(75)              | .12(75)            | 75                     |
|                       | 15                   | 18                   | 21                   | 12                   | 9                  |                        |
| $(Q-E)^2$             | (16-15) <sup>2</sup> | (18-18) <sup>2</sup> | (20-21) <sup>2</sup> | (14-12) <sup>2</sup> | (7-9) <sup>2</sup> |                        |
|                       | 1                    | 0                    | 1                    | 4                    | 4                  |                        |
| $(Q-E)^{2}/E$         | 1/15 +               | 0/18 +               | 1/21 +               | 4/12 +               | 4/9                | $\Sigma (Q-E)^2 / E =$ |
|                       | .067 +               | 0 +                  | .048 +               | 0.33 + 0.            | 44 = .885          | .885                   |

**H**<sub>0</sub>: Stated proportions are correct.

H<sub>1</sub>: Stated proportions are **not** correct.

$$K=5, \qquad \alpha = .10$$

degrees of freedom df = k - 1 = 5 - 1 = 4

Critical value = 
$$\chi^2 = 7.779$$



Test Statistic =  $\chi^2 = 0.885$  Falls not inside CR

**TI-83/84** Input **O**bserved values into L1 and **E**xpected Values into L2 and then use L3 to write  $(L_1 - L_2)^2 / L_2 \rightarrow stat \rightarrow Calc \rightarrow Option 1 \rightarrow L_3 \rightarrow Calculate$ 





| 1-Var Stats L3 | 1-Var Stats<br>x=.1784126984<br>Σx=.8920634921<br>Σx²=.315353993<br>Sx=.1976098041<br>σx=.176747582<br>↓n=5 |
|----------------|-------------------------------------------------------------------------------------------------------------|
|----------------|-------------------------------------------------------------------------------------------------------------|

**Conclusion:** Not inside CR then Fail to Reject  $H_0$  or Accept  $H_0$ Comment: Fail to Reject or Accept stated proportions are correct.

**Case 16.** At  $\alpha = 1\%$ , test the hypothesis that **the proportions of grades are the same** for stat. students? The following table lists the grade distribution for a sample of 100 students for stat class,

| Grade                 | Α  | В  | С  | D  | F | Total |
|-----------------------|----|----|----|----|---|-------|
| Students (Observed) O | 32 | 25 | 19 | 16 | 8 | 100   |

Hint: to find the expected values by expecting that the proportions of grades are the same, we *divide* total of 100 students by 5(different grades).

| Grade                 | Α                    | В                    | С                    | D                    | F                   | Total                                     |
|-----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|-------------------------------------------|
| Students (Observed) O | 32                   | 25                   | 19                   | 16                   | 8                   | 100                                       |
| Students (Expected) E | 20                   | 20                   | 20                   | 20                   | 20                  | 100                                       |
| $(Q-E)^2$             | (32-20) <sup>2</sup> | (25-20) <sup>2</sup> | (19-20) <sup>2</sup> | (16-20) <sup>2</sup> | (8-20) <sup>2</sup> |                                           |
| (                     | 144                  | 25                   | 1                    | 16                   | 144                 |                                           |
| $(O-E)^{2}/E$         | 144/20               | 25/20                | 1/20                 | 16/20                | 144/20              | Test statistics                           |
|                       | 7.2 +                | 1.25 +               | .05 +                | 0.8 +                | 7.2 =16.25          | $\chi^2 = \sum \frac{(O-E)^2}{E} = 16.25$ |

H<sub>0</sub>: Equal proportions of grades for stat. students.

H<sub>1</sub>: Unequal proportions of grades for stat. students.

K= 5, degrees of freedom = 5-1 = 4,  $\alpha = .01$  Critical value =  $\chi^2 = 13.277$ 



**Conclusion:** Reject **H**<sub>0</sub>.

Comment: Therefore proportions of grades are not the same for all students.

А

A

13.277

# **Test of Independence (Contingency Table)**

**Case 17**. In a certain town, there are about one million eligible voters. A simple random sample of 1000 eligible voters was chosen to study the relationship between sex and participation in the last election. The results are summarized in the following 2X2 (read two by two) contingency table:

The Observed values

|             | Men(M) | Women(W) | Total |
|-------------|--------|----------|-------|
| Voted       | 280    | 360      | 640   |
| Didn't vote | 150    | 210      | 360   |
|             | 430    | 570      | 1000  |

We want to check whether being a man or a woman (columns) is independent of having voted in the last election (rows). In other words is "sex and voting independent"?

The Expected values

|             | Men(M)         | Women(W)   | Total |
|-------------|----------------|------------|-------|
| Voted       | (430)(640)     | (570)(640) | 640   |
|             | = 275.2        | <u> </u>   |       |
| Didn't vote | (430)(360)     | (570)(360) | 360   |
|             | = <b>154.6</b> |            |       |
|             | 430            | 570        | 1000  |

| 0                      | 280                    | 360                    | 150                    | 210                                |                                              |
|------------------------|------------------------|------------------------|------------------------|------------------------------------|----------------------------------------------|
| Ε                      | 275.2                  | 364.8                  | 154.8                  | 205.2                              |                                              |
| $(O-E)^2$              | 23.04                  | 23.04                  | 23.04                  | 23.04                              |                                              |
| $\left(O-E\right)^2/E$ | 23.04/275.5<br>0.084 + | 23.04/364.8<br>0.063 + | 23.04/275.5<br>0.149 + | 23.04/275.5<br>0.084 = <b>0.38</b> | $\chi^{2} = \sum \frac{(O-E)^{2}}{E} = 0.38$ |

Test at 1% significance level whether that gender and opinions of adults are independent on this issue.

Test statistic = 
$$\chi^2 = \sum \frac{(O-E)^2}{E}$$
 = 8.252 Falls not inside CR



Conclusion: We accept  $H_0$  that *gender* and *opinions of adults* are *independent* on this issue.

Comment: opinions of adults are dependent on their gender.