- Local (Relative) Max and Local Min: where
$f^{\prime}(x)=0$ and $f^{\prime \prime}(x)<0$ for local max

(slope of tangent line $=0$, concave down)
$f^{\prime}(x)=0$ and $f^{\prime \prime}(x)>0$ for local min (slope of tangent line $=0$, concave up) $f^{\prime}(x)$ does not exist but $f(x)$ does
- Global Max and Global Min: The absolute highest and lowest points of the function including the end points.
a) Open Interval, No End Points (entire real line):

- Local Maximum at: \boldsymbol{q}
- Local Minimum at: \boldsymbol{p} and \boldsymbol{r}
- No Global (Absolute) Maximum
- Global (Absolute) Minimum at: p
- Local Maximum at: \boldsymbol{p} and \boldsymbol{r}
- Local Minimum at: \boldsymbol{q}
- Global (Absolute) Maximum at: \boldsymbol{p}
- No Global (Absolute) Minimum
b) Closed Interval, With End Points such as $a \leq x \leq b$:

- Local Maximum at: a, q and b
- Local Minimum at: \boldsymbol{p} and \boldsymbol{r}
- Global (Absolute) Maximum at: b
- Global (Absolute) Minimum at: p

- Local Maximum at: \boldsymbol{p} and \boldsymbol{r}
- Local Minimum at: $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{q}
- Global (Absolute) Maximum at: p
- Global (Absolute) Minimum at: b

The following example is similar to problems 18, 19 and 20 on page 186.

Example 1: For the function $\quad f(x)=-x^{3}+3 x^{2}-4 ; \quad(-1.5 \leq x \leq 3)$
a) Find the f ' and f ".
b) Find the critical points.
c) Find the inflection points.
d) Evaluate f at its critical points and the endpoints of the given interval. Identify local and global maxima and minima in the interval.
e) \quad Graph f

The following examples are similar to the final exam style (keep your work to review for final exam).

Example 2: For the function $\quad f(x)=x^{3}-3 x^{2}+6 ; \quad(-1.1 \leq x \leq 2.5)$
a) Find the f ' and f ".
b) Find the critical points.
c) Find the inflection points.
d) Use $1^{\text {st }}$ or $2^{\text {nd }}$ derivative test to classify the critical points as local max or local min.
e) Find any global max or global min
f) Sketch a graph of the function.

Example 3: For the function $\quad f(x)=2 x^{3}-6 x+2 ; \quad(-1.5 \leq x \leq 2)$
a) Find the f ' and f ".
b) Find the critical points.
c) Find the inflection points.
d) Use $1^{\text {st }}$ or $2^{\text {nd }}$ derivative test to classify the critical points as local max or local min.
e) Find any global max or global min
f) Sketch a graph of the function.

Answers for Example 3:
Critical points at $x=-1$ and $x=1$. Inflection point at (0,2)
Local Max at $(-1.5,4.25)$; Global Min at $(1,-2)$; Global Max at $(-1,6)$ and $(2,6)$

Example 1 Solution:

$$
f(x)=-x^{3}+3 x^{2}-4 ; \quad(-1.5 \leq x \leq 3)
$$

a) $\quad f^{\prime}(x)=-3 x^{2}-6 x \quad ; \quad f^{\prime \prime}(x)=-6 x-6$
b) Critical points where $f^{\prime}(x)=0$, then

$$
-3 x^{2}-6 x=0 \quad \text { or } \quad-3 x(x-2)=0 \quad \rightarrow x=0 \text { and } x=2
$$

c) Inflection points where $f^{\prime \prime}(x)=0$, then

$$
-6 x-6=0 \quad \text { or } \quad-6(x-1)=0 \quad \rightarrow x=1, y=-2
$$

(Substitute $x=1$ in the original function of $f(x)=-x^{3}+3 x^{2}-4$ to get $y=-2$).
d) $x=0$
$x=2$
$\rightarrow \quad f(0)=-4$
$\rightarrow \quad f(2)=0$
$x=-1.5$ (end point)
$\rightarrow \quad f(-1.5)=6.125$
$x=3$ (end point)
$\rightarrow \quad f(3)=-4$

Global Min at ($0,-4$)
Local Max at $(2,0)$
Global Max at ($-1.5,6.125$)
Global Min at (3, -4)

$$
f(x)=x^{3}-3 x^{2}+6 ; \quad(-1.1 \leq x \leq 2.5)
$$

a) $f^{\prime}(x)=3 x^{2}-6 x \quad ; \quad f^{\prime \prime}(x)=6 x-6$
b) Critical points where $f^{\prime}(x)=0$, then

$$
3 x^{2}-6 x=0 \quad \text { or } \quad 3 x(x-2)=0 \quad \rightarrow x=0 \text { and } x=2
$$

c) Inflection points where $f^{\prime \prime}(x)=0$, then

$$
6 x-6=0 \quad \text { or } \quad 6(x-1)=0 \quad \rightarrow x=1, y=4
$$

(Substitute $x=1$ in the original function of $f(x)=x^{3}-3 x^{2}+6$ to get $y=4$).
d) Local Max and Local Min at the critical points of $x=0$ and $x=2$. Substitute each point in the second derivative and check the sign of the second derivative:
$f^{\prime \prime}(0)=6(0)-0=-6<0$; concave down
$f^{\prime \prime}(2)=6(2)-2=6 \quad>0$; concave up
e) Use End Points and critical points to check Global Max and Global Min:

