Abe Mirza
$$\lim_{x \to a} f(x) = L$$
 Math

We are interested to know what happen to function f(x) as x approaches a number such as x = a ($x \to a$). Do we get a value such as L, or we do not get a value and call it as limit does not exist (DNE) as $x \to a$. Mathematically we can express the expression of limit as $\lim_{x \to a} f(x) = L$ or $\lim_{x \to a} f(x) = DNE$

One-sided limit.

Obviously we can approach $x \rightarrow a$ from two sides, and see what happens;

negative side $x \to a^-$ so limit expression will then be $\lim_{x \to a^-} f(x)$

or

positive side $x \to a^+$ so limit expression will then be $\lim_{x \to a^+} f(x)$

How to do a limit problem?

1. Evaluate the expression with x = a (disregard negative or positive side), if you get a value then this is the limit value.

Example 1:
$$\lim_{x \to 3^{-}} x^2 + 4 = 3^2 + 4 = 13$$
, $\lim_{x \to 3^{+}} x^2 + 4 = 3^2 + 4 = 13$

Example 2:
$$\lim_{x \to -2^+} x(3 - \sqrt{2 + x}) = -2(3 - \sqrt{2 - 2}) = -6$$

(But be careful)

Example 3: $\lim_{x \to -2^-} x(3 - \sqrt{2 + x}) =$ No limit, because if you approach x = a from negative side inside the $\sqrt{}$ will be negative and there is no real answer.

$$\lim_{x \to -2^{-}} x(3 - \sqrt{2 - 2.001}) = -2.001(3 - \sqrt{-.001})$$

2. If you do not get a value for its limit (indeterminate form 0/0) then try to **simplify** the expression and apply the limit.

Example 4:
$$\lim_{x \to 4} \frac{x^2 - 16}{x - 4} = ?$$
, $\frac{16 - 16}{4 - 4} = \frac{0}{0}$,
let's simplify $\frac{x^2 - 16}{x - 4} = \frac{(x - 4)(x + 4)}{x - 4} = (x + 4)$, now $\lim_{x \to 4} \frac{x^2 - 16}{x - 4} = \lim_{x \to 4} (x + 4) = 8$

Is f(x) continuous at point x = a? Yes, if $\lim_{x \to a} f(x) = f(a)$

It means that the limit as $x \to a$ exists and has the same value as of f(a).

$$\lim_{x \to -\infty} f(x) = L \quad \text{or} \quad \lim_{x \to \infty} f(x) = L$$

1. If it is **not** a rational expression, simply replace x by $(-\infty \text{ or } \infty)$

Example 5:
$$\lim_{x \to -\infty} x^2 + 4 = (-\infty)^2 + 4 = \infty + 4 = \infty$$
,
Example 6: $\lim_{x \to \infty} x^2 + 4 = \infty^2 + 4 = \infty + 4 = \infty$,
Example 7: $\lim_{x \to -\infty} x^3 + 4 = (-\infty)^3 + 4 = -\infty + 4 = -\infty$,
Example 8: $\lim_{x \to \infty} x^3 + 4 = (\infty)^3 + 4 = \infty + 4 = \infty$,

2. If it is a rational expression, divide every term by the highest exponent of the variable in the denominator and then apply the limit as x approaches to $(-\infty \text{ or } \infty)$

Example 9:
$$\lim_{x \to \infty} \frac{x^2 + 4}{x} = \lim_{x \to \infty} \frac{x^2 / x + 4 / x}{x / x} = \lim_{x \to \infty} \frac{x + 4 / x}{1} = \lim_{x \to \infty} \frac{\infty + 4 / \infty}{1} = \lim_{x \to \infty} \frac{\infty + 0}{1} = \infty$$

Example 10:
$$\lim_{x \to \infty} \frac{x}{x^2 + 4} = \lim_{x \to \infty} \frac{x/x^2}{x^2/x^2 + 4/x^2} = \lim_{x \to \infty} \frac{1/x}{1 + 4/x^2} = \lim_{x \to \infty} \frac{1/\infty}{1 + 4/\infty^2} = \lim_{x \to \infty} \frac{0}{1 + 0} = 0$$

Example 9:
$$\lim_{x \to \infty} \frac{5x^2 + 4}{2x^2 - 3x} = \lim_{x \to \infty} \frac{5x^2 / x^2 + 4 / x^2}{2x^2 / x^2 - 3x / x^2} = \lim_{x \to \infty} \frac{5 + 4 / x^2}{2 - 3 / x} = \lim_{x \to \infty} \frac{5 + 4 / \infty^2}{2 - 3 / \infty} = \lim_{x \to \infty} \frac{5 + 0}{2 - 0} = \frac{5}{2},$$

Composite functions

Given, f(x), and g(x) how to find the following composite functions?

1.
$$f(f(x))$$
 2. $g(g(x))$ **3.** $f(g(x))$ **4.** $g(f(x))$

We work from inside out.

Example 1. Let's f(x) = x+1, and $g(x) = x^2$

$$f(f(x)) = f(x+1) = (x+1) + 1 = x + 2$$

$$g(g(x)) = g(x^{2}) = (x^{2})^{2} = x^{4}$$

$$f(g(x)) = f(x^{2}) = x^{2} + 1$$

$$g(f(x)) = g(x+1) = (x+1)^{2}$$

Example 2. Let's f(x) = x - 3, and $g(x) = (x - 1)^2$, find

f(f(5)) = f(5-3) = f(2) = 2-3 = -1 $g(g(5)) = g(4^{2}) = g(16) = 16^{2} = 256$ $f(g(5)) = f(4^{2}) = f(16) = 16 - 3 = 13$ $g(f(5)) = g(5-3) = g(2) = (1)^{2} = 1$

Practice problems

Find the limits for the following problems;

$1. \lim_{x \to 1^-} x + 3$	2. $\lim_{x \to 1^+} x + 3$	3. $\lim_{x \to 1} x + 3$	4. Is $f(x) = x + 3$ continuous at $x = 1$?
5. $\lim_{x \to 1^-} \frac{1}{x-1}$	6. $\lim_{x \to 1^+} \frac{1}{x-1}$	7. $\lim_{x \to 1} \frac{1}{x-1}$	8. Is $f(x) = \frac{1}{x-1}$ continuous at $x = 1$?
9. $\lim_{x \to 1^-} \frac{x^2 - 1}{x - 1}$	10. $\lim_{x \to 1^+} \frac{x^2 - 1}{x - 1}$	11. $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$	12. Is $f(x) = \frac{x^2 - 1}{x - 1}$ continuous at $x = 1$?
13. $\lim_{x \to -1^{-}} \frac{x(x+1)}{x+1}$	14. $\lim_{x \to -1^+} \frac{x(x+1)}{x+1}$	15. $\lim_{x \to -1} \frac{x(x+1)}{x+1}$	16. Is $f(x) = \frac{x(x+1)}{x+1}$ continuous at $x = -1$?
17. $\lim_{x \to 0^-} \frac{x^2 + 2x}{x}$	18. $\lim_{x \to 0^+} \frac{x^2 + 2x}{x}$	19. $\lim_{x \to 0} \frac{x^2 + 2x}{x}$	20. Is $f(x) = \frac{x^2 + 2x}{x}$ continuous at $x = 0$?
Given $f(x) = \begin{cases} x-2\\ x+2 \end{cases}$	$\begin{array}{ll} 2 & if \ x \le 1 \\ 2 & if \ x > 1 \end{array}$		
21. $\lim_{x \to \Gamma} f(x)$	22. $\lim_{x \to 1^+} f(x)$	23. $\lim_{x \to 1} f(x)$	24. Is $f(x)$ continuous at $x = 1$?
Given $f(x) = \begin{cases} x^2 - x \\ x + 1 \end{cases}$	$ \begin{array}{ll} & if x < 2 \\ & if x \ge 2 \end{array} $		
$25. \lim_{x \to 2^-} f(x)$	26. $\lim_{x \to 2^+} f(x)$	27. $\lim_{x \to 2} f(x)$	28. Is $f(x)$ continuous at $x = 2$?
Given $f(x) = \begin{cases} \sqrt{x} - 1 \\ -1 + 1 \end{cases}$	$\frac{-5}{\sqrt{x}} if \ x \ge 9$		
29. $\lim_{x \to 9^{-}} f(x)$	30. $\lim_{x \to 9^+} f(x)$	31. $\lim_{x \to 9} f(x)$	32. Is $f(x)$ continuous at $x = 9$?

33.
$$\lim_{x \to -\infty} \frac{x^2 + 2x}{3x + 1}$$
34.
$$\lim_{x \to \infty} \frac{x^2 + 2x}{3x + 1}$$
35.
$$\lim_{x \to -\infty} \frac{3x + 1}{x^2 + 2x}$$
36.
$$\lim_{x \to \infty} \frac{3x + 1}{x^2 + 2x}$$

37.
$$\lim_{x \to -\infty} \frac{3x^2 + 2x}{x^2 + 1}$$
38.
$$\lim_{x \to \infty} \frac{3x^2 + 2x}{x^2 + 1}$$
39.
$$\lim_{x \to -\infty} \frac{x^2 + 1}{3x^2 + 2x}$$
40.
$$\lim_{x \to \infty} \frac{x^2 + 1}{3x^2 + 2x}$$

Answers

1	2	3	4	5	6	7	8
4	4	4	yes	- %	∞	DNE	no
9	10	11	12	13	14	15	16
2	2	2	no	-1	-1	-1	no
17	18	19	20	21	22	23	24
2	2	2	no	-1	3	DNE	no
25	26	27	28	29	30	31	32
3	3	3	yes	2	2	2	yes
33	34	35	36	37	38	39	40
- ∞	x	0	0	3	3	1/3	1/3

Composite functions

Given $f(x) = 2x - 1$, and $g(x) = (x + 1)^2$, find							
1. $f(f(x))$	2. $g(g(x))$	3. $f(g(x))$	4. $g(f(x))$				
5. $f(f(-3))$	6 $g(g(-3))$	7. $f(g(-3))$	8. <i>g</i> (<i>f</i> (-3))				
Given $f(x) = x-3$, and $g(x) = \sqrt{x+5}$, find							
9. $f(f(x))$	10. $g(g(x))$	11. $f(g(x))$	12. $g(f(x))$				

13. <i>f</i> (<i>f</i> (4))		14 g(g(4))		15. $f(g(4))$	16. $g(f(4))$		
1	2	3	4	5	6	7	8
4x-3	$\left(\left(x+1\right)^2+1\right)^2$	$2(x+1)^2-1$	$(2x)^2$	-15	25	7	36
9	10	11	12	13	14	15	16
<i>x</i> – 6	$\sqrt{\sqrt{x+5}+5}$	$\sqrt{x+5}-3$	$\sqrt{x+2}$	-2	$\sqrt{8}$	0	$\sqrt{6}$