For the following, find all relative extrema. Use the Second Derivative Test where applicable.

1) $f(x)=6 x-x^{2}$
$f(x)=6 x-x^{2}$
$f^{\prime}(x)=6-2 x$
$f^{\prime \prime}(x)=-2$
$6-2 x=0 \Rightarrow x=3$
$f^{\prime \prime}(x)<0$, so $x=3$ must be a maximum
local maximum of 9 at $x=3$ (also an absolute maximum)
2) $f(x)=x^{2}+3 x-8$
$f(x)=x^{2}+3 x-8$
$f^{\prime}(x)=2 x+3$
$f^{\prime \prime}(x)=2$
$2 x+3=0 \Rightarrow x=\frac{-3}{2}$
$f^{\prime \prime}(x)>0$, so $x=\frac{-3}{2}$ must be a minimum
local minimum of $-\frac{41}{4}$ at $x=\frac{-3}{2}$ (also an absolute minimum)
3) $f(x)=-(x-5)^{2}$
$f(x)=-(x-5)^{2}$
$f^{\prime}(x)=-2(x-5)=-2 x+10$
$f^{\prime \prime}(x)=-2$
$-2 x+10=0 \Rightarrow x=5$
$f^{\prime \prime}(x)<0$, so $x=5$ must be a maximum
local maximum of 0 at $x=5$ (also an absolute maximum)
4) $f(x)=x^{2 / 3}-3$
$f(x)=x^{2 / 3}-3$
$f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}=\frac{2}{3 x^{1 / 3}}$
$f^{\prime \prime}(x)=-\frac{2}{9} x^{-4 / 3}$
$\frac{2}{3 x^{1 / 3}}=0$ does not exist, but $f^{\prime \prime}$ is undefined at $x=0$
$f^{\prime \prime}(0)$ does not exist. We must use a different test.
First Derivative Test:

x	-1	0	1
f^{\prime}	$-\frac{2}{3}$	DNE	$\frac{2}{3}$

Local minimum of -3 at $x=0$ (also an absolute minimum)
5) $f(x)=\sqrt{x^{2}+1}$
$f(x)=\sqrt{x^{2}+1} \quad$ Domain: all reals
$f^{\prime}(x)=\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}(2 x)=\frac{x}{\sqrt{x^{2}+1}}$
$f^{\prime \prime}(x)=-\frac{1}{4}\left(x^{2}+1\right)^{-3 / 2}(2 x)(2 x)+2\left(\frac{1}{2}\left(x^{2}+1\right)^{-1 / 2}\right)=\frac{1}{\sqrt{x^{2}+1}}-\frac{x^{2}}{\sqrt{\left(x^{2}+1\right)^{3}}}$
$\frac{x}{\sqrt{x^{2}+1}}=0$ at $x=0$
$f^{\prime \prime}(0)=1$, so $x=0$ is a minimum
local minimum of 1 at $x=0$ (also an absolute minimum)
6) $f(x)=x+\frac{4}{x}$
$f(x)=x+\frac{4}{x} \quad$ Domain: all reals except $x=0$
$f^{\prime}(x)=1-\frac{4}{x^{2}}=\frac{x^{2}-4}{x^{2}}$
$f^{\prime \prime}(x)=\frac{8}{x^{3}}$
$\frac{x^{2}-4}{x^{2}}=0$ at $x=2$ or $x=-2$
$f^{\prime \prime}(2)=1$, so $x=0$ is a minimum; $f^{\prime \prime}(-2)=-1$, so $x=0$ is a maximum local minimum of 4 at $x=2$; local maximum of -4 at $x=-2$

For the following, find all relative extrema, points of inflection, and intervals of concavity. Then use a graphing calculator to graph the function and confirm you answers.
7) $f(x)=x^{3}-12 x$
$f(x)=x^{3}-12 x$
$f^{\prime}(x)=3 x^{2}-12$
$f^{\prime \prime}(x)=6 x$
$3 x^{2}-12=0 \Rightarrow x= \pm 2$
$f^{\prime \prime}(-2)=-12 \Rightarrow$ local max local max of 16 at $x=-2$
$f^{\prime \prime}(2)=12 \Rightarrow$ local min local min of -16 at $x=2$
$6 x=0 \Rightarrow x=0 \quad(0,0)$ is a point of inflection
concave down on $(-\infty, 0)$, concave up on $(0, \infty)$
8) $f(x)=\frac{1}{4} x^{4}-2 x^{2}$
$f(x)=\frac{1}{4} x^{4}-2 x^{2}$
$f^{\prime}(x)=x^{3}-4 x$
$f^{\prime \prime}(x)=3 x^{2}-4$
$x^{3}-4 x=0 \Rightarrow x=0, \pm 2$
$f^{\prime \prime}(-2)=8 \Rightarrow$ local min local min of -4 at $x=-2$
$f^{\prime \prime}(0)=-4 \Rightarrow$ local max local max of 0 at $x=0$
$f^{\prime \prime}(2)=8 \Rightarrow$ local min local min of -4 at $x=2$
$3 x^{2}-4=0 \Rightarrow x= \pm \sqrt{\frac{4}{3}}\left(\pm \sqrt{\frac{4}{3}},-\frac{20}{9}\right)$ are points of inflection
concave up on $\left(-\infty,-\sqrt{\frac{4}{3}}\right)$, concave down on $\left(-\sqrt{\frac{4}{3}}, \sqrt{\frac{4}{3}}\right)$, concave up on $\left(\sqrt{\frac{4}{3}}, \infty\right)$
9) $f(x)=x \sqrt{x+3}$
$f(x)=x \sqrt{x+3}$ Domain: $[-3, \infty)$
$f^{\prime}(x)=\sqrt{x+3}+x\left(\frac{1}{2}(x+3)^{-1 / 2}\right)=\frac{3 x+6}{2 \sqrt{x+3}}$
$f^{\prime \prime}(x)=\frac{(2 \sqrt{x+3})(3)-(3 x+6)(x+3)^{-1 / 2}}{4 x+12}$
$f^{\prime}(x)=0 \Rightarrow \frac{3 x+6}{2 \sqrt{x+3}}=0 \Rightarrow x=-2$
$f^{\prime \prime}(-2)=\frac{6 \sqrt{1}-0}{4}>0$, so local min at $x=-2$ (also abs min)
$f(-3)=0$, so local max at $x=-3$

$$
\begin{aligned}
f^{\prime \prime}(x)=0 & \Rightarrow(2 \sqrt{x+3})(3)-(3 x+6)(x+3)^{-1 / 2}=0 \\
& \Rightarrow \frac{6 x+18-(3 x+6)}{\sqrt{x+3}}=0 \\
& \Rightarrow 3 x+12=0 \Rightarrow x=-4 \text { (this is out of the domain) }
\end{aligned}
$$

convex up on $(-3, \infty)$

