FIPLE CHOICE. Ch	oose the one alternative that I	best completes the stateme	nt or answers the questio	n.
A) The mean	lowing would be an appropria of a sample is equal to 55.			1)
,	of a population is greater than	1 55.		
	of a population is equal to 55.			
D) Only A and	u C are true.			
	lowing would be an appropria	ate alternative hypothesis?		2)
	of a sample is greater than 55.			
	of a population is greater than	55.		
	of a population is equal to 55.			
D) The mean	of a sample is equal to 55.			
3) A Type I error is	committed when			3)
	eject a null hypothesis that is t	rue.		
	null hypothesis that is false.			
	null hypothesis that is true.			
D) we don't re	eject a null hypothesis that is f	alse.		
4) The power of a t	est is measured by its capabili	ty of		4)
A) rejecting a	null hypothesis that is false.			
, , ,	null hypothesis that is true.			
	ng a null hypothesis that is fals			
D) not rejectir	ng a null hypothesis that is tru-	е.		
5) If an economist	wishes to determine whether t	there is evidence that average	ge family income in a	5)
community exce	eds \$25,000			
	d test should be utilized.			
,	ed test should be utilized.			
C) either a on D) None of th	e-tailed or two-tailed test cou e above.	ıld be used with equivalent	results.	
6) You know that t of the test is	he probability of committing a	a Type II error (α) is 5%, you	u can tell that the power	6)
A) 95%.	B) 2.5%	C) unknown	D) 97.5%	
7) The power of a s	statistical test is			7)
	ility of rejecting H_0 when it is	false.		, <u> </u>
· •	ility of rejecting H_0 when it is			
· •	ility of not rejecting <i>H</i> ₀ when			
•	ility of not rejecting H ₀ when			
(2) The area $1 \leq 1 \leq 1$	he nerver of a statistical test is			0)
-	he power of a statistical test is B) α .	C) $1 - \alpha$.	D) β.	8)
A) $1 - \beta$.	D) <i>a</i> .	C) $I = a$.	D) p.	
	h to test H_0 : μ 47 versus H_1 :	•	we conclude that the	9)
Ų	than 47 when its true value is	5		
	hade a correct decision	B) We have made a		
C) We have m	nade a Type I error.	D) None of the abo	ve are correct.	

Researchers determi Suppose a random s tissues used during	should the Kimberly Clark Co ned that 60 tissues is the avera ample of 100 Kleenex users yie a cold: \overline{X} = 52, <i>s</i> = 22. Give the	ge number of tissues used elded the following data o null and alternative hypo	l during a cold. n the number of	10)
	s used during a cold is less that		=	
A) $H_0: \mu$ 60 and		B) $H_0: \overline{X} = 60 \text{ and } H_1$		
C) $H_0: \overline{X} = 60$ and	$H_1: X < 60.$	D) $H_0: \mu$ 60 and $H_1:$	$\mu < 60.$	
	test H_0 : μ 30 versus H_1 : μ < mple of size 36 gives the stron			11)
A) $\overline{X} = 27, s = 4$	B) $\overline{X} = 32, s = 2$	C) $\overline{X} = 28, s = 6$	D) $\overline{X} = 26, s = 9$	
A) The significant B) The significant C) The level of sig error.	ng statements is <u>not</u> true about the level is also called the α lever the level is another name for Ty prificance is the maximum risk level of significance, the more	el. pe II error. s we are willing to accept i	n making a Type I	12)
13) If, as a result of a hy committed A) a Type I error. C) an acceptance	pothesis test, we reject the null error.	l hypothesis when it is fals B) no error. D) a Type II error.	se, then we have	13)
14) An entomologist wr	ative hypotheses for a hypoth ites an article in a scientific jou ies are unable to produce light B) H ₀ : p > 0.001 H _a : p = 0.001	rnal which claims that les due to a genetic mutation C) H ₀ : p = 0.001	n. D) H ₀ : p < 0.001	14)
15) A car company clain gallon in the city. A) H ₀ : μ = 30 mp H _a : μ > 30 mp		e a mean gas mileage grea C) H ₀ : μ = 30 mpg H _a : μ < 30 mpg	ter than 30 miles per D) H ₀ : μ < 30 mpg H _a : μ = 30 mpg	15)
16) A skeptical paranom less than 3 in every A) H ₀ : p = 0.003 H _a : p > 0.003	nal researcher claims that the p one thousand. B) H ₀ : p > 0.003 H _a : p = 0.003	proportion of Americans t C) H ₀ : p < 0.003 H _a : p = 0.003	hat have seen a UFO is D) H ₀ : p = 0.003 H _a : p < 0.003	16)
17) The owner of a footh A) H ₀ : μ > 68,100	ball team claims that the mean B) H ₀ : μ = 68,100	attendance at games is gr C) H ₀ : μ = 68,100	eater than 68,100. D) H ₀ : μ < 68,100	17)

A) H ₀ : μ 10.5 minutes	B) H ₀ : μ = 10.5 minutes
$H_a: \mu = 10.5 \text{ minutes}$	$H_a: \mu > 10.5 minutes$
C) H ₀ : μ = 10.5 minutes	D) H ₀ : μ = 10.5 minutes
H _a : μ 10.5 minutes	H _a : μ < 10.5 minutes

20)

22)

A) H ₀ : μ = 503	B) H ₀ : μ = 503	C) H ₀ :: μ 503	D) H ₀ : μ = 503
H _a : μ < 503	H _a :μ 503	H _a : μ < 503	H _a : μ > 503

20) A consumer advocacy group claims that the mean amount of juice in a 18 ounce bottled drink is not

18 ounces, as stated by the bottler.

A) H ₀ : μ = 18 ounces	B) H ₀ : μ = 18 ounces
H _a : μ < 18 ounces	$H_a: \mu > 18 \text{ ounces}$
C) H ₀ : μ = 18 ounces	D) H ₀ : μ 18 ounces
H _a : μ 18 ounces	$H_a: \mu = 18 \text{ ounces}$

A) H ₀ : μ = 24 ounces	B) H ₀ : μ = 24 ounces
H _a : μ 24 ounces	$H_a: \mu < 24 \text{ ounces}$
C) H ₀ : μ = 24 ounces	D) H ₀ : μ 24 ounces
H _a : μ > 24 ounces	$H_a: \mu = 24 \text{ ounces}$

Solve the problem.

- 22) An entomologist writes an article in a scientific journal which claims that fewer than 7 in ten thousand male fireflies are unable to produce light due to a genetic mutation. Assuming that a hypothesis test of the claim has been conducted and that the conclusion is to reject the null hypothesis, state the conclusion in nontechnical terms.
 - A) There is sufficient sample evidence to support the claim that the proportion is less than 7 in ten thousand.
 - B) There is not sufficient sample evidence to support the claim that the proportion is greater than 7 in ten thousand.
 - C) There is sufficient sample evidence to support the claim that the proportion is greater than 7 in ten thousand.
 - D) There is not sufficient sample evidence to support the claim that the proportion is less than 7 in ten thousand.

- 23) A psychologist claims that more than 78 percent of the population suffers from professional problems due to extreme shyness. Assuming that a hypothesis test of the claim has been conducted and that the conclusion is failure to reject the null hypothesis, state the conclusion in nontechnical terms.
 - A) There is sufficient sample evidence to support the claim that the proportion is greater than 78 percent.
 - B) There is sufficient sample evidence to support the claim that the proportion is less than 78 percent.
 - C) There is not sufficient sample evidence to support the claim that the proportion is greater than

78 percent.

- D) There is not sufficient sample evidence to support the claim that the proportion is less than 78 percent.
- 24) A cereal company claims that the mean weight of the cereal in its packets is at least 20 ounces. Assuming that a hypothesis test of the claim has been conducted and that the conclusion is to reject the null hypothesis, state the conclusion in nontechnical terms.
 - A) There is sufficient sample evidence to warrant rejection of the claim that the mean weight is less than 20 ounces.
 - B) There is not sufficient sample evidence to to support the claim that the mean weight is at least 20 ounces.
 - C) There is not sufficient sample evidence to warrant rejection of the claim that the mean weight is less than 20 ounces.
 - D) There is sufficient sample evidence to support the claim that the mean weight is at least 20 ounces.

Identify the Type I error or Type II error as indicated.

25) In the past, the mean running time for a certain type of flashlight battery has been 9.5 hours. The manufacturer has introduced a change in the production method and wants to perform a hypothesis test to determine whether the mean running time has increased as a result. The hypotheses are:

 $H_0: \mu = 9.5$ hours

 $H_a: \mu > 9.5$ hours

Identify the Type II error.

A) Reject the claim that the mean running time is 9.5 hours when actually the mean running time is

9.5 hours.

- B) Fail to reject the claim that the mean running time is 9.5 hours when actually the mean running time is 9.5 hours.
- C) Fail to reject the claim that the mean running time is 9.5 hours when actually the mean running time is greater than 9.5 hours.
- D) Reject the claim that the mean running time is 9.5 hours when actually the mean running time is

greater than 9.5 hours.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

 26) If a researcher rejects a false null hypothesis, she has made a _____ decision.
 26) _____

27) If a researcher accepts a false null hypothesis, she has made a _____ error. 27) _____

24) ____

25)

28)	If a researcher rejects a true null hypothesis, she has a	made a	error.	28)
29)	If a researcher accepts a true null hypothesis, she has	made a	_ decision.	29)
TRUE/FA	LSE. Write 'T' if the statement is true and 'F' if the s	tatement is false).	
	True or False: For a given level of significance, if the s committing a Type I error will increase.	sample size is inc	creased, the probability	of 30)
	True or False: For a given level of significance, if the s committing a Type II error will increase.	sample size is inc	creased, the probability	of 31)
MULTIPL	E CHOICE. Choose the one alternative that best co	mpletes the state	ement or answers the q	uestion.
	 A is a numerical quantity computed from the decision on whether or not to reject the null hypothes A) parameter C) test statistic 	-	level	ing a 32)
33)	n appropriate response. Suppose you want to test the claim that $\mu = 65.4$. Given significance of $\alpha = 0.05$, when should you reject H ₀ ?	en a sample size	of n = 35 and a level of	33)
	A) Reject H ₀ if the standardized test is less than -2	2.33.		
	B) Reject H_0 if the standardized test statistic is less	s than -1.645.		
	C) Reject H_0 if the standardized test statistic is less	s than -1.28.		
	D) Reject H_0 if the standardized test statistic is less			
SHORT A	NSWER. Write the word or phrase that best comple	etes each statem	ent or answers the que	stion.
	Test the claim that μ > 24, given that α = 0.05 and the and s = 1.2.	sample statistics	s are n = 50, \overline{x} = 24.3,	34)
	Test the claim that μ 41, given that α = 0.01 and the and s = 4.3.	sample statistics	s are n = 40, \overline{x} = 42.8,	35)
	Test the claim that μ 22, given that α = 0.05 and the and s = 2.7.	sample statistics	s are n = $35, \bar{x} = 21.1$	36)
	A local brewery distributes beer in bottles labeled 32 that the brewery is cheating its customers. The agenc their contents, and obtains a sample mean of 31.6 our ounce. Use a 0.01 significance level to test the agency its customers.	y selects 50 of the nces with a stand	ese bottles, measures lard deviation of 0.70	37)
	A local politician, running for reelection, claims that less than the required 6 years. A sample of 80 convict selected, and the mean length of prison time was fou standard deviation of 1 year and 3 months. At $\alpha = 0.0$	ted car thieves w nd to be 5 years	as randomly and 6 months, with a	38)

	pro	ove th	neir p	oint	, the	y ran	don	nly se	elect	one n	ionth.	Their re	esearch	ets a da 1 yields test the	the nu	umber o	of	39) _		
	70 32 66 44	60	41 72 68		69 88 57		59	57 60 70	56	83 65 63										
MUL	TIPLE C	CHO	ICE.	Cho	ose	the o	ne a	lterr	ativ	e that	best co	omplet	es the	statem	ent or	answe	rs the	questic	on.	
		termi nple :				ne no	rma	l san	nplin	g dist	ributio	n can b	e used	. The c	laim is	p = 0.2	75 and	the	40)	
		A) Do				orm	al di	strib	utior	۱.		B) U	se the	norma	l distri	bution.				
						ne no	rma	l san	nplin	g dist	ributio	n can b	e used	. The c	laim is	p 0.3	300 an	d the	41)	
		nple : A) Us				distr	ibuti	ion.				B) C	o not i	use the	norma	ıl distri	butior	۱.		
	42) De n =		ine tł	ne cri	itical	valu	le, z(), to	test t	he cla	im abc	out the	popula	ation pi	roporti	on p	0.325	given	42)	
		d p = A) ±2		7. Us	eα=	. 0.05) ±1.6	645			C) ±	1.96			D) ±2	.575			
SHO	RT ANS	WEF	R. W	rite	the v	vord	or p	hras	e tha	t bes	comp	letes ea	ach sta	tement	or ans	swers t	he qu	estion.		
										,		0		re over .05, test	0			43) _		
	In	0	duat	ing c	lass	of 21		·		5				s gradu uggest				44) _		
	the	stud	lents	in a	day	class	. The	e rest	alts c	of a sp	ecial e		e show	class sco n belov).01.				45) _		
	Da	iy Sti n1	ıden = 36				enin n2 =	ig Sti 41	ıden	ts										
		$\frac{1}{x_1}$	= 73				2 = 1													
		s ₁ =	= 5.8			S	92 = 0	6.3												
	are	a. A	comp	petito	or ba	nk cł	neck	s the	wai	ting ti		both b		erved i The sam				46) _		
	Lo	cal B	ank				Co	mpe	titor	Bank										
		- 45						2 - 5												

eempenter sum
n ₂ = 50
$\overline{x2}$ = 4.9 minutes
$s_2 = 1.0$ minute

Use the traditional method of hypothesis testing to test the given claim about the means of two populations. Assume that two dependent samples have been randomly selected from normally distributed populations. 47) Five students took a math test before and after tutoring. Their scores were as follows. 47) ______

•••	000000000000000000000000000000000000000						
	Subject	А	В	С	D	Е	
	Before	71	66	75	78	66	
	After	75	75	73	81	78	•

Using a 0.01 level of significance, test the claim that the tutoring has an effect on the math scores.

48) A coach uses a new technique to train gymnasts. 7 gymnasts were randomly selected and their competition scores were recorded before and after the training. The results are shown below.

Subject							
Before							
After	9.5	9.8	9.6	9.5	9.6	9.9	9.2

Using a 0.01 level of significance, test the claim that the training technique is effective in raising the gymnasts' scores.

Perform the indicated goodness -of-fit test.

49) In studying the occurrence of genetic characteristics, the following sample data were obtained. At the 0.05 significance level, test the claim that the characteristics occur with the same frequency.

CharacteristicABCDEFFrequency283045483839

- 50) Among the four northwestern states, Washington has 51% of the total population, Oregon has 30%, Idaho has 11%, and Montana has 8%. A market researcher selects a sample of 1000 subjects, with 450 in Washington, 340 in Oregon, 150 in Idaho, and 60 in Montana. At the 0.05 significance level, test the claim that the sample of 1000 subjects has a distribution that agrees with the distribution of state populations.
- 51) Use a significance level of 0.01 to test the claim that workplace accidents are distributed on workdays as follows: Monday 25%, Tuesday: 15%, Wednesday: 15%, Thursday: 15%, and Friday: 30%.
 In a study of 100 workplace accidents, 20 occurred on a Monday, 18 occurred on a Tuesday, 15 occurred on a Wednesday, 15 occurred on a Thursday, and 32 occurred on a
- 52) You roll a die 48 times with the following results.

Number						
Frequency	13	3	12	15	2	3

Friday.

Use a significance level of 0.05 to test the claim that the die is fair.

48) _____

49) _____

50) _____

51) ____

52) _____