T183

The instructions on this page also work for the TI-83 Plus and the TI-83 Plus Silver Edition.

The position of the graphically represented keys can be found by moving your mouse on top of the graphic.

Turn your calculator on

Press ON .

Clearing the memory

Press STAT. The word EDIT should be highlighted (if not, arrow over to it). You should see five choices; the fourth is $4: C$ ClList. Press 4 . The screen will now say CIrList. Specify lists one and two, by pressing 2ND \begin{tabular}{l}
2N

\hline

 (you should see L1 above the key), then

\hline \boldsymbol{y} \& 2ND \& 2

\hline
\end{tabular} screen will now say CIrList L1, L2. Press ENTER. Calculator will say Done signifying a clear memory.

Entering data

one variable

Press STAT. Press 1 (you should see 1:Edit on the screen). You should see 3 columns: L1, L2, L3. The cursor should be at L1 (if not, arrow over to it). Type in the first number, then ENTER. Type in the second number, then ENTER. When finished, press 2ND | 2 | MODE |
| :--- | :--- |
| (you | | should see the word QUIT above the key).

two variables

Press STAT. Press 1 (you should see 1:Edit on the screen). You should see 3 columns: L1, L2, L3. The cursor should be at L1 (if not, arrow over to it). Type in the first x-value, then ENTER. Repeat until all x-values are entered. Press \square. The cursor should jump to the top of the second column, L2. Enter the y-values (make sure they line up with the corresponding x values). When finished, press $2 N D /$ MODE (you should see the word QUIT above the key).

Calculating one-variable statistics

mean (x)

Press STAT. Use the blue \square to move the highlighted bar over the CALC menu. Choose the 1-Var stats option (that is, press $\quad 1$). You'll see the words 1-Var Stats on the screen. Press | $2 N D$ | 1 |
| :--- | :--- |
| (you should see L1 above the key). You'll see the words 1-Var Stats L1 on | | the screen. Press ENTER. The mean is the top value on the screen.

standard deviation for populations (σ or σ_{n})

Press STAT. Use the blue \square to move the highlighted bar over the CALC menu. Choose the 1-Var stats option (that is, press 1). You'll see the words 1-Var Stats on the screen. Press | $2 N D$ | 1 |
| :--- | :--- | (you should see L1 above the key). You'll see the words 1-Var Stats L1 on the screen. Press ENTER. The population standard deviation is the fifth value on the screen.

standard deviation for samples (s or σ_{n-1})

Press STAT. Use the blue \square to move the highlighted bar over the CALC menu. Choose the 1-Var stats option (that is, press $\quad 1$). You'll see the words 1-Var Stats on the screen. Press 2ND | 1 | 1 |
| :--- | :--- |
| (you should see L1 above the key). You'll see the words 1-Var Stats L1 on | | the screen. Press ENTER. The sample standard deviation is the fourth value on the screen.

Calculating two-variable statistics

r (correlation)

The TI-83 will only display the correlation in the DiagnosticOn mode. If it's in this mode, go to the next paragraph. If it's not (and it probably isn't), press 2ND word CATALOG above the key). You'll see a screen with an alphabetical list of commands. Arrow down to DiagnosticOn. Press ENTER. The screen will now say DiagnosticOn. Press ENTER again. You will see the word Done. You can continue now.
Press STAT. Use the blue \square to move the highlighted bar over the CALC menu. Choose the $\operatorname{LinReg}(a+b x)$ option (that is, press $\quad 8$). You'll see the words $\operatorname{LinReg}(a+b x)$ on the
 should see L2 above the key). You'll see the words LinReg($a+b x$) L1,L2 on the screen. Press ENTER. The correlation is the fourth number in the list ($r=$..). [NOTE: You can also find correlation by pressing 4: LinReg(ax+b), instead of 8: LinReg(a+bx). In this case, the roles of the a and b are switched, but r is the same.]

regression coefficients

slope

Press STAT. Use the blue \square to move the highlighted bar over the CALC menu. Choose the LinReg($a+b x$) option (that is, press 8). You'll see the words $\operatorname{LinReg}(a+b x)$ on the screen. Press 2 2ND 11 (you should see L1 above the key), then | y | $2 N D$ | 2 |
| :--- | :--- | :--- | (you should see L2 above the key). You'll see the words LinReg(a+bx) L1,L2 on the screen. Press ENTER. The slope is the second number in the list. ($b=$ \qquad .). NOTE: You can also find correlation by pressing 4: $\operatorname{LinReg}(a x+b)$, instead of 8 : $\operatorname{LinReg}(a+b x)$. In this case, the roles of the a and b are switched, but r is the same.]

y-intercept

Press STAT. Use the blue \square to move the highlighted bar over the CALC menu. Choose the LinReg $(a+b x)$ option (that is, press 8). You'll see the words $\operatorname{LinReg}(a+b x)$ on the screen. Press 2ND | (you should see L1 above the key), then | 2ND | 2 |
| :--- | :--- | :--- | :--- | should see L2 above the key). You'll see the words $\operatorname{LinReg}(a+b x) L 1, L 2$ on the screen. Press ENTER. The y-intercept is the first number in the list ($a=$ \qquad). NOTE: You can also find correlation by pressing 4 : $\operatorname{LinReg}(a x+b)$, instead of 8 : $\operatorname{LinReg}(a+b x)$. In this case, the roles of the a and b are switched, but r is the same.]

Calculating combinations and permutations

combinations (nCr)
Enter the n value. Press MATH. You should see modes across the top of the screen. You want the fourth mode: PRB (arrow right three times). You will see several options: nCr is the third. Press 3 . Enter the r value. Press ENTER.
permutations (nPr)
Enter the n value. Press MATH. You should see modes across the top of the screen. You want the fourth mode: PRB (arrow right three times). You will see several options: n Pr is the second. Press 2 . Enter the r value. Press ENTER.

Turning the calculator off

Press | $2 N D$ | ON |
| :--- | :--- |

Worked Out Examples

In the following examples, we list the exact key sequence used to find the answer. We will list the keys by the main symbol on the key. In parentheses, we will list a helpful mnemonic, e.g. we will list e^{x} as shlfy $\mathrm{LN}\left(\mathrm{e}^{\mathrm{x}}\right)$.

A: What is the mean and standard deviation of the following list of numbers? $15 \quad 16 \quad 20 \quad 21$

1: Clear Memory

STAT	4	2ND	1	(L1)	,	2ND	2	(L2)
ENTER								
STAT	1	1	5	Enter	1	6	ENT	
2	0 Enter		2	1 Enter		2ND	MODE	
STAT		(CALC)		$1{ }_{(1}$	1-Var Stats)		2ND	1
(L1)								

4: Compute the standard deviation (population)

5: Compute the standard deviation (sample)

You should get a mean of 18, population St. Dev. of 2.5495 and a sample st. Dev. of 2.9439.
B: Find the linear regression line for the following table of numbers. Also find the correlation.

x	1	2	3	4
y	2	4	5	7

1: Clear Memory

2: Enter Data

STAT	4	2ND	- 1		,		2N		2	(L2)
ENTER										
STAT	1	(1:Edit)		Enter		2		ENTER		3
ENTER	4	ENTER	\checkmark	2	ENTER		4		ENTER	
5	ENTER	7	ENTER	2ND	MOD		QUT	UIT)		

3: Compute the slope of

4: Compute the y-intercept of the regression line

STAT		$)^{\text {(CA }}$		8	$(\operatorname{LinReg}(a+b x))$	2ND	1	
(L1)	,	2ND	2	(L2)	ENTER			

5: Compute the correlation

STAT		${ }_{(C A}$		8		inReg(a+bx))	2ND	1	
(L1)	,	2ND	2		2)	ENTER			

You should get a slope of 1.6, a y-intercept of 0.5, and a correlation of 0.9923.
The regression line would be: $y=1.6 x+0.5$.

C: Find ${ }_{10} \mathrm{C}_{6}$ and ${ }_{9} \mathrm{P}_{5}$.

1: Compute ${ }_{10} \mathrm{C}_{6}$
2: Compute ${ }_{9} \mathrm{P}_{5}$

1	0	MATH	$\stackrel{ }{ }$	$\stackrel{ }{ }$	-	(PRB)	3	(nCr)
6	Enter							
9	MATH	$\stackrel{ }{ }$	$\stackrel{ }{ }$	$\stackrel{ }{ }$	(PRB)	2	(nPr)	5
ENTER								

You should get ${ }_{10} \mathrm{C}_{6}=210$ and ${ }_{9} \mathrm{P}_{5}=15120$.
Go to:

Turn your calculator on

Press ON .

Clearing the memory

Press STAT. The word EDIT should be highlighted (if not, arrow over to it). You should see five choices; the fourth is 4:CIrList. Press 4 . The screen will now say ClrList. Specify lists one and two, by pressing 2ND 1 (you should see L1 above the key), then | | $2 N D$ | 2 |
| :--- | :--- | :--- | (you should see L2 above the key). The screen will now say CIrList L1, L2. Press ENTER. Calculator will say Done signifying a clear memory.

Clearing the Graph Screen

Press 2ND (You should see DRAW above the Key) 1 (You will now see ClrDraw on the screen.) ${ }^{\text {ENTER (Calculator will say Done }}$ signifying a clear memory.)

It also helps to clear the function register. Press $\mathrm{Y}=\mathrm{ENTER}$.

Entering data

one variable

Press STAT. Press 1 (you should see 1:Edit on the screen). You should see 3 columns: L1, L2, L3. The cursor should be at L1 (if not, arrow over to it). Type in the first number, then ENTER. Type in the second number, then ENTER . Continue until finished.

two variables

Press STAT. Press 1 (you should see 1:Edit on the screen). You should see 3 columns: L1, L2, L3. The cursor should be at L1 (if not, arrow over to it). Type in the first x value, then ENTER. Repeat until all x-values are entered. Press \square. The cursor should jump to the top of the second column, L2. Enter the y-values (make sure they line up with
the corresponding x values). Continue until finished.

Drawing the Graphs

Warning: Errors occur if the function register has functions in it. See above for instructions on how to clear the function register.

Scatterplot

Press | $2 N D$ | $\mathrm{Y}=$ (It says STAT PLOT above the key.) |
| :--- | :--- |

| $E N T E R$ |
| :--- | :--- | :--- | cursor is on the first of six graphs, the one that looks like this: \angle. This is the one we want, so press ENTER. Press | | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ | $\boldsymbol{\gamma}$ |
| :--- | :--- | :--- | :--- |
| to accept L 1 | as the first list | | | and L2 as the second list. (If your data is in other lists, then input them here, press 2 ND followed by the key with your list number.). Use the \square to choose the mark you want. Press Graph.

Histogram

like this: $\mathbb{d}_{\text {h }}$. This is the one we want, so press ENTER.
If your data is in L1, then you can just press Graph. Otherwise, press $\boldsymbol{\nabla}$ and select your list (press 2 ND followed by the key with your list number).Now press Graph.

Example graphs

Scatterplot
Problem: Make a scatterplot of the following data:

$\mathrm{x}:$	7	2	4	2	5
$\mathrm{y}:$	8	4	6	2	7

Solution:

1. Enter data:		STAT	ENTER		ENT
2	Enter	4	ENTER	2	Enter
	-	8	ENTER	4	ENTER
6	ENTER	2	ENTER		ENTER

2. Clear the graph screen: 2ND $\mathrm{Y}=$

4	ENTER

3. Draw the graph: $2 \mathrm{ND} \mid \mathrm{Y}=1$ ENTER

$\boldsymbol{\nabla}$	Graph

Histogram

Problem: Draw a histogram of the following data:
5141341452
Solution:

1.	da	STAT ${ }^{\text {ENTER }}$			ENT
1	Enter	4	Enter	1	Enter
3	Enter	4	Enter	1	Enter
4	Enter		Enter	2	Enter

2. Clear the graph screen: 2ND $\mathrm{Y}=$

4	ENTER

3. Draw the graph: 2ND \begin{tabular}{|l|l|l|}
\hline $\mathrm{Y}=$ \& ENTER

\hline

\hline ENTER \& $\boldsymbol{\nabla}$

\hline
\end{tabular}\(\left(\begin{array}{ll}ENTER \& \boldsymbol{\nabla}

\hline\end{array}\right.\) | $\boldsymbol{\gamma}$ | Graph |
| :--- | :--- |

Turning the calculator off

T1-83
 RDVRNEED STRTISTICS

Normal and T - Distribution

The position of the graphically represented keys can be found by moving your mouse on top of the graphic.
On this page, I will describe how to do the following functions:
Computing probabilities with normal distributions.
Inverse normal problems
A one-sample t-test
A one-sample z-test
A z-confidence interval
A t-confidence interval

Probabilities on the Normal Distribution

The Problem: Given a normal distribution X with mean μ and standard deviation σ, what is the probability that X is between a and b ? $P(a<X<b)$

The Solution: Press 2ND Press 2 . The screen will now say "normalcdf(". Enter a, b, μ, σ in that order with a \quad, in between each. Press \square ENTER.
If you want to compute $P(X<b)$, then make a very small. If you want to compute $P(X>a)$, then make b very large.

Examples: A normal distribution X has a mean of 100 and a standard deviation of 8.

1. What is the probability that X is between 90 and 110 ?
2. What is the probability that X is larger than $120 ?$

Solutions:
1.

2ND	VARS	(DISTR)	2		9	0	,	1	1	0
\boldsymbol{y}	1	0	0	\boldsymbol{y}	8	$)$	ENTER			

should be . 7887003221 or roughly 79%
2.

| 2ND | VARS | (DISTR) | 2 | 1 | 2 | 0 | , | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | , | 1 | 0 | 0 | \boldsymbol{y} | 8 | \rangle | ENTER | answer should be . 0062096799 or roughly 0.62%

The Problem: Given a normal distribution X with mean μ and standard deviation σ, what x-value is larger than a percentage p of the data? (p must be between 0 and 1, naturally.)
l.e., for what x is $P(X<x)=p$?

The Solution: Press 2ND Press 3 . The screen will now say "invnorm(". Enter p, μ, σ in that order with a \quad, in between each. Press \square ENTER.

If you want to compute $\mathrm{P}(\mathrm{X}>\mathrm{x})=\mathrm{p}$. Compute $\mathrm{P}(\mathrm{X}<\mathrm{x})=1-\mathrm{p}$.

Examples: A normal distribution has a mean of 20 and a standard deviation of 3.

1. Find x such that $P(X<x)=70 \%$
2. Find x such that $P(X>x)=80 \%$

Solutions:
1.

2ND	VAR	(DISTR)	3	\cdot	7	0	\boldsymbol{y}	2	0
\boldsymbol{y}	3	$)$	ENTER. The answer should be 21.57320153						

2.

 17.4751363.

TI 83 / TI 84 Calculator Tips for Statistics

Descriptive Statistics

To find the mean, standard deviation, median, $\mathrm{Q}_{1} \& \mathrm{Q}_{3}$: first enter data into a list:
Stat - Edit - scroll up to top of list till L_{1} is highlighted, press clear, scroll down, enter data, $2^{\text {nd }}$ Quit.
Then enter Stat, Calc, 1-Var Stats, $2^{\text {nd }}, \mathrm{L}_{1}$ or appropriate list \#.
Example: given the following data: $\{1,3,7,9\}$, determine the mean, standard deviation and variance. enter "Stat", "Edit", scroll to top of list, "clear", scroll down, enter " 1 ", " 3 ", " 7 ", " 9 " $2^{\text {nd }}$, Quit, "Stat", "Calc", "1-Var Stats", $2^{\text {nd }}, L_{1}$, enter.
Answer: mean $=5$, std dev $=3.651483717$,
variance $=13.3333333334$ (note: to get variance, square the standard deviation)

Counting Principles

Combination: ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ (n objects taken r at a time; order doesn't matter.)
enter " n ", Math, $\mathrm{PRB}, \mathrm{n}_{\mathrm{r}}$, "r", "enter".
Permutation: ${ }_{\mathrm{n}} \mathrm{P}_{\mathrm{r}}$ (n objects taken r at a time; order does matter.)
enter " n ", Math, PRB , ${ }_{\mathrm{n}} \mathrm{P}_{\mathrm{r}}$, " r ", "enter".
Factorial: ! (n objects arranged in order)
enter Math, PRB, ! , "enter".
Examples: How many ways can 7 books be arranged on a bookshelf?
enter " 7 ", Math, PRB, !, "enter".
Answer: 5040
A horse race has 12 entries. Assuming that there are not ties, in how many ways can these horses finish first, second, and third?
enter " 12 ", Math, PRB, " 3 ", "enter".
Answer: 1320
Binomial Probability
Binomial Rules:

1. 2 outcomes
2. Fixed \# of trials
3. Probabilities are constant
4. Events are independent
$p=$ probability of success
$\mathrm{q}=$ probability of failure
$\mathrm{n}=$ number of trials
To find $\mathrm{P}(\mathrm{x}=\#)$:
$2^{\text {nd }}$ Vars - "binompdf" enter (n, p, x)
To find $\mathrm{P}(\mathrm{x}<\#)$:
$2^{\text {nd }}$ Vars - "binomcdf" enter (n, p, x)
Examples: Find the probability of getting 7 heads in 10 flips of a coin.
$2^{\text {nd }}$ Vars - "binompdf" $(10,0.5,7)$
Answer: 0.1171875
Find the probability of getting at least 7 heads in 10 flips
of a coin. $\mathrm{P}(\mathrm{x} \geq 7)=1-\mathrm{P}(\mathrm{x} \leq 6)$
$1-2^{\text {nd }}$ Vars - "binomcdf" $(10,0.5,6)$
Answer: 0.171875

Normal Probability

To find a probability if a Z-score is known:
$2^{\text {nd }}$ Vars - "normalcdf" - enter "lower limit, upper limit"
Example: $\mathrm{P}(-0.9<\mathrm{Z}<1.5)$
Enter $2^{\text {nd }}$ Vars - "normalcdf", $(-0.9,1.5)$, enter.
Answer: 0.7491326798
If given x-scores, mean \& std. dev:
$2^{\text {nd }}$ Vars - "normalcdf" - "lower limit, upper limit, mean, std. dev." If x > \#, use 999999 as upper limit. If X < \#, use -999999 as lower limit.
Example: $\mathrm{P}(40<\mathrm{x}<71)$, mean $=60$, std dev $=18$
$2^{\text {nd }}$ Vars - "normalcdf" $(40,71,60,18)$ enter
Answer: 0.5961767383
To find z -scores when given cumulative probabilities: $2^{\text {nd }}$ Vars - "invnorm" - (enter probability as decimal)
Example: Find z-score for P_{80}.
$2^{\text {nd }}$ Vars - "invnorm" (0.80) enter
Answer: 0.8416212335
To find an x-value given percent wanted, mean, std dev:
$2^{\text {nd }}$ Vars - "invnorm" ($\%$ wanted, mean, std dev)
Example: Given mean $=500$, std $\operatorname{dev}=120$, find Q_{1}.
$2^{\text {nd }}$ Vars - "invnorm" ' $(0.25,500,120)$
Answer: 419

Confidence Intervals (1 - Sample)

If you have raw data, first enter data into a list:
Stat - Edit - scroll up to top of list till L_{1} is highlighted, press clear, scroll down, enter data, $2^{\text {nd }}$ Quit.
z-interval: Stat - Tests - "z-interval" - choose Data if you have raw data or Stat of you have statistical data, press enter, enter rest of info requested, press calculate.
T-interval: Stat - Tests - "t-interval" - choose Data if you have raw data or Stat of you have statistical data, press enter, enter rest of info requested, press calculate.
1-PropZint: Stat - Tests - "1-PropZint" Enter information requested, press "calculate".
Example: Given $\mathrm{n}=20$, mean $=22.9$, std dev $=1.5$, find the $90 \% \mathrm{CI}$.
Stats - Tests - "Z-interval" - "Stats", enter statistics, press "calculate".
Answer: $(22.348,23.452)$

Hypothesis Testing (1-Sample)

If you have raw data, first enter data into a list:
Stat - Edit - scroll up to top of list till L_{1} is highlighted, press clear, scroll down, enter data, $2^{\text {nd }}$ Quit.
Z-Test: Stat - Tests - "Z-Test" choose Data if you have raw data or Stat if you have statistical data, press enter, enter rest of information requested, press "calculate".
T-Test: Stat - Tests - "T-Test" choose Data if you have raw data or Stat if you have statistical data, press enter, enter rest of information requested, press "calculate".
1-PropZtest: Stat - Tests - "a PropZtest" enter data requested, press "calculate".
Example: Use z-Test to test claim: $\mu<5.500, \alpha=0.01$, $\bar{X}=5.497$. $\mathrm{s}=0.011, \mathrm{n}=36$
Answer: $\mathrm{p}=.05>\alpha$, therefore, fail to reject H_{0}. There is not enough evidence at the 1% level to support the claim.

Hypothesis Testing 2 Samples

If you have raw data, first enter data into a list:
Stat - Edit - scroll up to top of list till L_{1} is highlighted, press clear, scroll down, enter data, $2^{\text {nd }}$ Quit.
2 SampZTest: Stat, Tests, 2-SampZTest, select Data if you have raw data, or Stats if you have statistical data, "enter", enter requested information, press "calculate".
$\mathbf{2}$ SampTTest: Stat, Tests, 2-SampTTest, select Data if you have raw data, or Stats if you have statistical data, "enter", enter requested information, enter "yes" for Pooled if $\sigma_{1}^{2}=\sigma_{2}^{2}$, otherwise enter "no", press
"calculate".
2-PropZTest: Stat, Tests, 2-PropZTest, enter statistical data requested, press "Calculate".
Example 1: Claim:
$\mu_{1}<\mu_{2}, \alpha=0.01, \bar{X}_{1}, s_{1}, n_{1}, \bar{X}_{2}=1195, s_{2}=105, n_{2}=105$
Decide if you should reject or fail to reject the H_{0}.
"Stat", "Tests", "2-SampZTest", "Stats", "enter",
$\sigma_{1}=75, \sigma_{2}=105, \bar{X}_{1}=1225, n_{1}=35, \bar{X}_{2}=1195$,
$n_{2}=105, \mu_{1}<\mu_{2}$, press "Calculate".
Answer: $\mathrm{p}=.967>\alpha$, therefore, fail to reject H_{0}.

Example 2:

$H_{o}: \mu_{1} \geq \mu_{2}, \alpha=0.10, \bar{X}_{1}=0.515, s_{1}=0.305, n_{1}=11$,
$\bar{X}_{2}=0.475, s_{2}=0.215, n_{2}=9$, Assume $\sigma_{1}^{2}=\sigma_{2}^{2}$. Decide
if you should reject or fail to reject the H_{0}.
"Stat", "Tests", "2-SampTTest", "Stats", "enter",
$\bar{X}_{1}=0.515, s_{1}=0.305, n_{1}=11, \bar{X}_{2}=0.475, s_{2}=0.215$,
$n_{2}=9, \mu_{1}>\mu_{2}$, Pooled: Yes, press "Calculate".
Answer: $\mathrm{p}=0.37>\alpha$, therefore fail to reject H_{0}.
Example 3: Claim: $p_{1} \leq p_{2}, \alpha=0.10$,
$x_{1}=344, n_{1}=860, x_{2}=304, n_{2}=800$. Decide if
you should reject or fail to reject the H_{0}.
"Stat", "Tests", "2-PropZTest",
$x_{1}=344, n_{1}=860, x_{2}=304, n_{2}=800, p_{1}<p_{2}$,
press "calculate".
Answer: $\mathrm{p}=0.20>\alpha$, therefore fail to reject the H_{0}.

Linear Regression \& Correlation

Before calculating r, you must enter the Diagnostic On command.
$2^{\text {nd }}, 0$ (catalog), "Diagnostic On", enter, enter.
First enter raw data into a list:
Stat - Edit - scroll up to top of list till L_{1} is highlighted, press clear, scroll down, enter data, $2^{\text {nd }}$ Quit.
"Stat", "CALC", "LinReg $(\mathrm{ax}+\mathrm{b}) ", 2^{\text {nd }}, \mathrm{L}_{1}$ or appropriate list \# for $\mathrm{x}, 2^{\text {nd }}, L_{2}$ or appropriate list \# for y, enter. Output should look something like the
following:
LinReg

$$
\begin{array}{ll}
\mathrm{y}=\mathrm{ax}+\mathrm{b} & \text { where } \\
\mathrm{a}=11.8244078 & \mathrm{a}=\text { slope } \\
\mathrm{b}=35.30117105 & \mathrm{~b}=\mathrm{y} \text {-intercept } \\
\mathrm{r}^{2}=.9404868083 & \mathrm{r}^{2}=\text { coefficient of determination } \\
\mathrm{r}=.9697869912 & \mathrm{r}=\text { correlation coefficient }
\end{array}
$$

