Ti 89

The position of the graphically represented keys can be found by moving your mouse on top of the graphic.

Turn your calculator on

Press ON .

Clearing the memory

This is not that much an issue as the TI-89 has tons of memory. Simply give your new list a different name. However, you cannot use a name if it's already in use, so you might want to delete a list if you're done with it.

Press | | 2ND | - |
| :--- | :--- | :--- |
| (it says VAR-LINK above the key). Press | | |
| | | | the cursor is on the list you want to delete. Press F1 other lists, if necessary. Then press ESC to get back to the main screen.

Entering data

one variable
Press APPS. A menu will appear on the screen. Press 6 (Data/Matrix Editor), then press 3 (New). You'll see a window that says Type:. If it already says Type: Data, press $\boldsymbol{\nabla}$ to accept. If not, press \square to view the other options and pick Data then press ∇ to accept. The cursor should now be on Folder: Main. Press ∇ to accept. Pick an arbitrary name (say M) for the list. If it's in use, either choose another name or delete the list (see above for instructions). To choose M, type to accept and verify the name. A table should appear with c1, c2, c3 over the columns. Use c1 for one variable data. Enter the first number. Press ENTER. Enter the second number. Press ENTER. Continue until all the data has been entered.
two variables

Press APPS. A menu will appear on the screen. Press 6 (Data/Matrix Editor), then press 3 (New). You'll see a window that says Type:. If it already says Type: Data, press \square to accept. If not, press \square to view the other options and pick Data then press

cursor should now be on Folder: Main. Press to to accept. The $^{\text {to }}$ accept. Press \begin{tabular}{|l|l|l}
\hline ALPHA \& \boldsymbol{y} \& (D) (we're calling our dataset D; call it whatever you want using

 the alpha-numeric keys; if you want to delete a list so you can reuse the name, use the Clear Memory instructions above). Then press ENTER

\hline \& ENTER

\hline
\end{tabular} (twice) to accept and verify the name. A table should appear with c1, c2, c3 over the columns. Use c1 for the x-variable. Enter the first x-value, then press ∇. Enter the second x-value, then ∇. Continue until all the x-values have been entered. Press \square to move the cursor to c 2 for the y variable. Press as many times as necessary to get the cursor next to the first x-value. Enter the first y-value, then ∇. Enter the second y value, then ∇. Continue until all the y-values have been entered. Make sure they line up with the corresponding x-values.

Calculating one-variable statistics

mean (x)

Press F5 (CALC). You'll see a row that says calculation type. Press \square. Press 1 (for One Var). Press ∇. You'll see x.........and a box. Type ALPHA $\quad>$ (for C). Press | ENTER | ENTER |
| :--- | :--- |
| and | |
| and | | is x, the mean.

standard deviation for populations (σ or σ_{n})

 screen with $x, \Sigma x, \Sigma x^{2}$, etc. Oddly enough, σx for the population is not on the list. However, it has been calculated.
To locate it, return to the home screen by pressing APPS

1 . At the bottom of the screen, type in $\%$ (| ALPHA | 3 |
| :---: | :---: |
| (s), X, then ENTER . On the screen, you'll see | | σx.

Press F5 (CALC). You'll see a row that says calculation type. Press \downarrow. Press 1 (for One Var). Press You'll see x.........and a box. Type ALPHA \quad (for C). Press | ENTER | ENTER and you'll see a chart. Look for sx - that's the |
| :---: | :---: | :---: | sample standard deviation.

Calculating two-variable statistics

r (correlation)
Press F5 (CALC). You'll see a row that says calculation type. Press $\gg 5$ (for Lin Reg). Press ALPHA $)$ (for c)
 to tell the calculator which variables to do the regression on. Then press ENTER again to tell it to run the regression. You'll see a screen with $a=, b=$, corr $=, R^{2}=$. The corr is what we're looking for here. R^{2} is the square of the correlation.
regression coefficients
slope
Press $\mathrm{F5}$ (CALC). You'll see a row that says calculation type. Press \rightarrow (for Lin Reg).

		ENTER
to tell the calculator which variables to		

y-intercept

do the regression on. Then press ENTER again to tell it to run the regression. You'll see a screen with $\mathrm{a}=, \mathrm{b}$ $=$, corr $=, R^{2}=$. The a value is the y-intercept.

Calculating combinations and permutations

combinations (nCr)

Press | 2ND | 5 |
| :--- | :--- | (MATH is written above the key). You should see several options on the screen. Press 7 (PROB). You will see more options. $n C r$ is the third option, so press 3 Enter the n value, then press $\quad \boldsymbol{y}$. Enter the r value, then press the \square key. Finally press ENTER.

permutations (nPr)

Press | $2 N D$ | 5 |
| :--- | :--- |
| (MATH is written above the key). You should | | see several options on the screen. Press 7 (PROB). You will see more options. nPr is the second option, so press 2 . Enter the n value, then press \boldsymbol{y}. Enter the r value, then press the $\quad>$ key. Finally press ENTER.

Turning the calculator off

Worked Out Examples

In the following examples, we list the exact key sequence used to find the answer. We will list the keys by the main symbol on the key. In parentheses, we will list a helpful mnemonic, e.g. we will list ex as SHIFT LN (e^{x}).

A: What is the mean and standard deviation of the following list of numbers?
$15 \quad 16 \quad 20 \quad 21$

1: To start

\square (as necessary)

F1	1	$E S C$

2: Enter Data

APPS	6	3						(D, although this is			
arbitrary)			5	ENTER			6	ENTER	2	0	
ENTER	2	1	Enter								

3: Compute the mean

4: Compute the standard deviation (population)

5: Compute the standard deviation (sample)

You should get a mean of 18, population standard deviation of 2.549509757 and a sample standard deviation of 2.943920289 .

B: Find the linear regression line for the following table of numbers. Also find the correlation.

x	1	2	3	4
y	2	4	5	7

1: To start

2: Enter Data

3: Compute the slope of the regression line

F5	$>$	5	ALPHA	$)$	1
ALPHA	$>$	2	(C1)	ENTER	ENTER

4: Compute the y-intercept of the regression line

F5	$>$	5	ALPHA	$)$	1
ALPHA	$>$	2	(C2)	ENTER	ENTER

C1)

5: Compute the correlation

F5	$>$	5	ALPHA	$)$	1
ALPHA	$>$	2	(C2)	ENTER	ENTER

C1)
ENTER

You should get a slope of 1.6, a y-intercept of 0.5 , and a correlation of 0.992277876 . The regression line would be: $y=1.6 x+0.5$.

C: Find ${ }_{10} \mathrm{C}_{6}$ and ${ }_{9} \mathrm{P}_{5}$.
1: Compute ${ }_{10} \mathrm{C}_{6}$

2: Compute ${ }_{9} \mathrm{P}_{5}$

2ND	5	(MATH)	7	(PROB)	3	(nCr)	1	
0	,	6	$)$	ENTER				
2ND	5	(MATH)		${ }_{(\text {(PROB })}$	2	(nPr)	9	
,	5	\cdots ENTER						

You should get ${ }_{10} \mathrm{C}_{6}=210$ and ${ }_{9} \mathrm{P}_{5}=15120$.

Sample Problems

During the summer, T.J. participates in a Thursday night softball league. Throughout the eight week season, he kept track of the number of times he struck out per game. Here is his data:

week: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 2 | 5 | 3 | 7 | 4 | 5 | 2 |

1. Find his average (mean) number of strikeouts per game this season.
2. Find the standard deviation of the strikeout data.
T.J.'s girlfriend (with whom he's struck out many times as well) thinks he'd play better if he didn't drink beer right before the game. Throughout the eight week season, she kept track of how many beers he consumed before playing. Here is her data:

week: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 1 | 3 | 2 | 4 | 1 | 5 | 2 |

3. Let X equal the number of beers and let Y equal the number of strikeouts. Find the regression line $Y=m X+b$.
4. What is the correlation between beer consumption and strikeouts? (Numerically, we mean. We know what your opinion is.)
T.J. has been demoted to manager. He has to decide which 9 players (out of the $\mathbf{2 0}$ malcontents on the team) he wants for the game on Saturday.
5. How many different options does he have for making up a team?

Now that T.J. has chosen his team of nine players, he needs to decide the opening line-up of four players.
6. How many different line-ups are there for him to choose from?

The full line up consists of all nine players.
7. How many full line-ups are there?

1. The mean number of strikeouts is 4 .
2. The population standard deviation is 1.58113883 .

The sample standard deviation is 1.690308509 .
3. The regression line is: $y=0.774193548 x+1.870967742$.

In practice, we would write it as $y=0.77 x+1.87$.
4. The correlation (r) is 0.681554201 . This means there is a moderately strong linear relationship between number of beers and number of strikeouts. The fact that r is positive indicates that a high number of beers corresponds to a high number of strikeouts and vice versa.
5. The number of options is ${ }_{20} \mathrm{C}_{9}=167,960$.
6. The number of different lineups is ${ }_{9} \mathrm{P}_{4}=3024$.
7. The full line up can be arranged in $9!=362880$. (Note: $9!={ }_{9} \mathrm{P}_{9}$.)

Getting Started with your TI-89 for Statistics

This is a first draft of these TI-89 basic instructions for statistics. If you find errors, please tell me so that I can make any necessary corrections. For instructions on all statistical calculations and tests, refer to the TI-89 stats/list editor manual.

Thank you to Susan Dean at De Anza College for contributing some of the TI-89 instructions from her on-line handouts for distance learning.

To see if you have the Statistics List Editor on your TI-89 calculator

Press APPS, highlight 1:FlashApps and press ENTER
Highlight the Stats/List Editor and press ENTER

If you do not have the Statistics List Editor on your TI-89 calculator, download it from the TI website. http://education.ti.com/us/product/apps/statsle.html
You will need to use the graphlink cable that connects your calculator to the computer in order to install the statistics list editor application on your calculator after you have downleaded it to a computer. Follow TI's instructions for download and installation.

To download the TI Statistics List Editor Manual as a PDF file to your computer, from the TI website http://education.ti.com/us/product/apps/statsle.html

To access the Statistics List Editor on your TI-89 calculator

(or if you do something that throws you out of the list editor at any time, follow these instructions to get back):

Press APPS, highlight 1:FlashApps and press ENTER
Highlight the Stats/List Editor and press ENTER
Your screen will now contain the list editor showing lists:
You can add, delete, or rename list if you wish check the stats/list editor manual for instructions

list1	list2	list3	list4

and function menus across the top:
F1 Tools
F2 Plots for statistics plots
F3 List for more list editor functions, especially 1:Names
F4 Calc for statistics calculations such as
1: 1 variable statistics
3: Regressions
4: Probability
6: Show stats
F5 Distr for probability distributions
F6 Tests for hypothesis tests
F7 Ints for confidence intervals

Generating Random Numbers on the TI-89

To generate n random integers between a lower bound and an upper bound while in the Statistics/List Editor

APPS Press 1: FlashApps Highlight Stats/List Editor and press ENTER to access list editor
F4: Calc 4: Probability 5:RandInt ENTER lower, upper, n) to generate random integers

To generate ONE random integer between 1 and an upper bound while in the HOME SCREEN and NOT in the Statistics/List Editor

TI-89: Press 2nd MATH. Press 7:Probability. Press 4:rand(enter upper bound) and press ENTER You will see the first random number. Keep pressing ENTER to get more random numbers between 1 and your upper bound inclusive.

To generate random values from a Binomial or Normal Distribution, while in the Statistics/List Editor:

APPS Press 1: FlashApps Highlight Stats/List Editor and press ENTER to access list editor
6: 6andNorm $(\mu, \sigma, \square \mathbf{k})$ generates k random values from a Normal probability distribution with mean μ and standard deviation σ. Use appropriate values for $\mu \sigma \mathrm{k}$

7: 7 randBin $\boxed{\mathbf{n}}, \mathbf{p} \square \mathbf{k} \square$ generates k random values from a Binomial probability distribution with n trials and $\mathrm{p}=$ probability of success.

Working with One Variable (Univariate) Data in the Statistics List Editor on the TI-89

Enter data into the list editor using the list editor screen

list1	list2	list3	list4

Clear lists by moving up the list to highlight the listname and then press CLEAR
This will erase the list contents and keep the list. You can then use the empty list for more data.
Using the delete option on the F3: list menu then F1:list manager on the will delete the whole list, title and all, from the editor and the space formerly displayed for that list will disappear from your screen. The list will no longer be available so you will not be able to put data into it.
Don't do this unless you are absolutely 100% sure that you want to make the entire list go away!!

Sorting Data in a list

Do NOT sort data if you are using a frequency list. Only sort data where all frequencies $=1$
Press F3 (for List) 2 (for 2:Ops) 1 (for 1:Sort List). If you see your list name, press ENTER. If the correct list name is not there, then enter it suing the alpha key to toggle between letters and numbers as necessary. Press ENTER. You should see your list in sorted order.

To find one variable statistics

If you have data in "list 1" and frequencies in "list 2"
F4: Calc 1:1-Var Stats

List:	list 1
Freq:	list 2
Category List: leave blank Include Categories: leave blank Press ENTER	

If you have data in "list 1" not frequency list
F4: Calc 1:1-Var Stats

List:	list 1
Freq:	leave blank
Category List:	leave blank
Include Categories: leave blank Press ENTER	

One variable statistics will appear on your screen, scroll down using the cursor keys to see additional summary statistics. Pressing enter will close the screen that shows the summary statistics.

To make a histogram or boxplot

F2: Plots 1:Plot Setup

* Make sure there are no checks next to any other plots. If there are, arrow to the plot and press F4 to uncheck them. Then arrow back to Plot 1.

Press F1:Define to define the highlighted Plot*
On the define plot screen that comes up, use right cursor arrow to display plot types:
select desired type from
1:Scatter
2: xc line
3: Box plot
4: Histogram
5: Modified Box Plot
enter desired interval width in the Hist bucket Width field enter list name for data into \mathbf{x}
\mathbf{x} data list name
y leave blank
move the cursor to the Use Freq and Categories? field:
If you are not using a frequency list, set to NO
Frequencies blank
If you are using a frequency list, set to YES and enter the list containing the frequencies Frequencies frequency list name
Press F5: Zoom data to have the calculator graph the plot in a window it deems appropriate for the data

Notes:

To enter list names into an input field:

position cursor in the desired field and then: either use the $2^{\text {nd }}$ and alpha keys to toggle between letters and numbers and to change case, and type in the list names directly
or
paste the name in by pressing 2nd VAR-LINK (above - key) to display the VAR-LINK [AII] menu. Highlight appropriate list name then press ENTER to paste the appropriate list name into the appropriate field on the set up menu

If you get an error message, check your MODE and make sure that the Graph mode is set to Function

To find the distributions menu: Press F5: Distr
Shade Menu
Shade Normal
Shade t
Shade Chi-square
Shade F
Inverse Menu Inverse Normal Inverse t Inverse Chi-square Inverse F
Normal Pdf
Normal Cdf
t Pdf
t Cdf
Chi-square Pdf
Chi-square Cdf

Enter parameters and values into input fields as prompted by your calculator
Then press ENTER and wait for answers to appear on an output screen

F Pdf
F Cdf
Binomial Pdf
Binomial Cdf
Poisson Pdf
Poisson Cdf
Geometric Pdf
Geometric Cdf
To find the hypothesis tests menu: Press 2nd F6: Tests using the F1 key Z-Test
T-Test
2-SampZTest
2-SampTTest
1-PropZTest
2-PropZTest
Chi2 GOF
Chi2 2-way
2-SampFTest LinRegTTest MultRegTests
ANOVA
ANOVA2-Way3

To find the confidence intervals menu: Press 2nd F7: Intervals using the F2 key ZInterval TInterval 2-SampZInt 2-SampTInt
2-SampTInt
1-PropZInt 2-PropZInt LinRegTInt MultRegint

Enter required information into input fields as prompted by your calculator Then press ENTER and wait for answers to appear on an output screen

Enter required information into input
fields as prompted by your calculator
Then press ENTER and wait for answers
to appear on an output screen

PROBABILITY DISTRIBUTIONS SUMMARY on the TI - 83, 83+, 84+, 86, 89
TI-83 and 84 , press $2^{\text {nd }}$ DISTR
TI-86 press $2^{\text {nd }}$ MATH MORE; then press F2 or F3 for the STAT menu; press F2:DISTR
TI-89 press APPS; Press 1: FlashApps; highlight Stats/List Editor press ENTER F5: Distr

DISCRETE PROB ABILITY DISTRIBUTIONS:		
function \& input	parameters	Description
$\begin{aligned} & \text { TI 83,4: binompdf(n,p,r) } \\ & \text { TI 86: bipdf(n,p,r) } \\ & \text { TI 89: binomial Pdf } \end{aligned}$	$\begin{aligned} & n=\text { number of trials } \\ & p=\text { probability of success } \\ & r=\text { number of success } \end{aligned}$	Binomial probability $P(X=r)$ of exactly r successes in \mathbf{n} independent trials, with probability of success p for a single trial. If r is omitted, gives a list of all probabilities from 0 to n
$\begin{aligned} & \text { TI 83,4: binomcdf(n,p,r) } \\ & \text { TI 86: bicdf(n, p, r) } \\ & \text { TI 89: binomial Cdf } \end{aligned}$	$\begin{aligned} & \mathrm{n}=\text { number of trials } \\ & p=\text { probability of success } \\ & r=\text { number of success } \end{aligned}$	Binomial cumulative probability $\mathrm{P}(\mathrm{X} \leq \mathrm{r})$ of r or fewer successes in \mathbf{n} independent trials, with probability of success p for a single trial. If r is omitted, gives a list of all cumulative probabilities from 0 to n
$\begin{aligned} & \text { TI 83,4: geometpdf(p,n) } \\ & \text { TI 86:gepdf(p,n) } \\ & \text { TI 89:geometric Pdf } \end{aligned}$	$p=$ probability of success $\mathrm{n}=$ number of trials	Geometric probability $\mathrm{P}(\mathrm{X}=\mathrm{n})$ that the first success occurs on the nth trial in a series of independent trials, with probability of success p for a single trial.
$\begin{aligned} & \text { TI 83,4: geometcdf(p,n) } \\ & \text { TI 86:gedf(p,n) } \\ & \text { TI 89: geometric Cdf } \end{aligned}$	$p=$ probability of success $\mathrm{n}=$ number of trials	Geometric cumulative probability $P(X \leq n)$ that the first success occurs on or before the nth trial in a series of independent trials, with probability of success p for a single trial.
$\begin{aligned} & \text { TI 83,4: } \operatorname{poissonpdf(~} \mu, \text { r) } \\ & \text { TI 86: } \operatorname{pspdf}(\mu, \mathrm{k}) \\ & \text { TI 89:Poisson Pdf } \end{aligned}$	$\begin{aligned} & \mu=\text { mean } \\ & r=\text { number of occurrences } \end{aligned}$	Poisson probability $P(X=r)$ of exactly r occurrences for a Poisson distribution with mean μ
TI 83,4: poissoncdf(μ, r) TI 86:psdf(μ, r) TI 89:Poisson cdf	$\begin{aligned} & \mu=\text { mean } \\ & r=\text { number of occurrences } \end{aligned}$	Poisson cumulative probability $\mathrm{P}(\mathrm{X} \leq \mathrm{r})$ of r or fewer occurrences for Poisson distribution with mean μ

CONTINUOUS PROB ABILITY DISTRIBUTIONS

"cdf" functions find the probability as area under the curve, above x axis within a specified interval of x values. "pdf" functions find the height of the curve above the x axis at a single x value; the "pdf" functions do not find probabilities, but they enable the calculator to draw or graph the curves for the probability distributions.
The inverse functions find the value of a percentile. The only inverse function on the TI-83 and TI-86 is the inverse normal. The TI-84 and 89 have expanded selections of inverse functions.

function \& input	parameters	Description
```Tl 83,4: normalcdf (c, d, \mu,\sigma ) TI 86:nmcdf (c, d, \mu,\sigma ) Tl 89:Normal Cdf```	$\begin{aligned} & \hline c=\text { lower bound } \\ & d=\text { upper bound } \\ & \mu=\text { mean } \\ & \sigma=\text { standard deviation } \end{aligned}$	$\mathrm{P}(\mathrm{c}<\mathrm{X}<\mathrm{d})$ for a normal distribution with mean $\mu$ and standard deviation $\sigma$.   To find $P(X>c)$ use upper bound $=10^{\wedge} 99$. To find $P(X<d)$ use lower bound $=(-) 10^{\wedge} 99$, using (-) key to indicate a negative number.
```Tl 83,4: invNorm(p, \mu,\sigma) TI 86:invNm(p, \mu,\sigma) TI 89: 2:Inverse , 1: Inverse Normal```	$\begin{aligned} & \hline p=\text { percentile }=\text { area to the left } \\ & \mu=\text { mean } \\ & \sigma=\text { standard deviation } \end{aligned}$	Finds the value of $x=c$ for which $P(X<c)=p$ for a normal distribution with mean $\mu$ and standard deviation $\sigma$.
TI 83,4: tcdf($\mathrm{a}, \mathrm{b}, \mathrm{df}$)	$\begin{aligned} & a=\text { lower bound } \\ & b=\text { upper bound } \\ & d f=\text { degrees of freedom } \end{aligned}$	Probability that a value lies between a and b for a Student's t distribution with the specified degrees of freedom To find $P(X>a)$, use upper bound $=10^{\wedge} 99$. To find $P(X<b)$, use lower bound $=(-) 10 \wedge 99$, using (-) key to indicate a negative number.
TI 83,4: χ^{2} cdf(a, b, df) TI 86: chicdf(a, b, df) TI 89:Chi-square Cdf	$\begin{aligned} & \hline a=\text { lower bound } \\ & b=\text { upper bound } \\ & d f=\text { degrees of freedom } \end{aligned}$	Probability that a value lies between a and b for a χ^{2} chi-square distribution with the specified degrees of freedom To find $P(X>a)$, use upper bound $=10^{\wedge} 99$. To find $\mathrm{P}(\mathrm{X}<\mathrm{b})$, use lower bound $=0$.

Binomial, Geometric, Poisson Distributions on the $\mathrm{TI}-83,83+$, 84+, 86, 89:

TI-83 and 84, press $2^{\text {nd }}$ DISTR
TI-86 press $2^{\text {nd }}$ MATH MORE and then press F2 or F3 for the STAT menu item F2:DISTR (menu location of STAT may vary on different calculators)
TI-89 press APPS; pPress 1: FlashApps; highlight Stats/List Editor press ENTER F5: Distr
pdf stands for probability distribution function and gives the probability $P(x=r)$
cdf stands for cumulative distribution function and gives the probability $\mathrm{P}(\mathrm{x} \leq \mathrm{r})$
Binomial Distribution

	TI - 83, 84	Tl-86	Tl-89
$P(x=r)$	binompdf(n,p,r)	bipdf(n,p,r)	binomial pdf(n,p,r)
$P(x \leq r)$	binomcdf(n,p,r)	bicdf(n,p,r)	binomial cdf(n,p,r)
$P(x<r)$	binomcdf(n,p,r-1)	bicdf(n,p,r-1)	binomial cdf(n,p,r-1)
$P(x>r)$	1- binomcdf(n,p,r)	$1-\operatorname{bicdf(n,p,r)}$	$1-$ binomial cdf(n,p,r)
$P(x \geq r)$	1- binomcdf(n,p,r-1)	1- bicdf(n,p,r-1)	1- binomial cdf(n,p,r-1)

Geometric Distribution

	TI-83, 84	TI-86	TI-89
$\mathrm{P}(\mathrm{x}=\mathrm{n})$	geometpdf(p, n)	geopdf(p,n)	geometric $\operatorname{pdf}(\mathrm{p}, \mathrm{n})$
$\mathrm{P}(\mathrm{x} \leq \mathrm{n})$	geometcdf(p, n)	geocdf(p, n)	geometric $\operatorname{cdf}(\mathrm{p}, \mathrm{n})$
$\mathrm{P}(\mathrm{x}<\mathrm{n})$	geometcdf($\mathrm{p}, \mathrm{n}-1$)	geocdf($\mathrm{p}, \mathrm{n}-1$)	geometric $\operatorname{cdf}(\mathrm{p}, \mathrm{n}-1)$
$\mathrm{P}(\mathrm{x}>\mathrm{n})$	1- geometcdf(p,n)	1- geocdf(p,n)	1- geometric $\operatorname{cdf}(\mathrm{p}, \mathrm{n})$
$P(x \geq n)$	1- geometcdf(p,n-1)	1- geocdf($\mathrm{p}, \mathrm{n}-1$)	1- geometric $\operatorname{cdf}(\mathrm{p}, \mathrm{n}-1)$

Poisson Distribution

	Tl-83, 84	Tl-86	Tl-89
$\mathrm{P}(\mathrm{x}=\mathrm{r})$	poissonpdf(mu,r)	pspdf(mu,r)	poisson $\operatorname{pdf}(m u, r)$
$\mathrm{P}(\mathrm{x} \leq \mathrm{r})$	poissoncdf(mu,r)	pscdf(mu,r)	poisson cdf(mu,r)
$\mathrm{P}(\mathrm{x}<\mathrm{r})$	poissoncdf(mu,r-1)	pscdf(mu,r-1)	poisson $\operatorname{cdf}(m u, r-1)$
$\mathrm{P}(\mathrm{x}>\mathrm{r})$	1- poissoncdf(mu,r)	1-pscdf(mu,r)	1- poisson cdf(mu,r)
$\mathrm{P}(\mathrm{x} \geq \mathrm{r})$	1- poissoncdf(mu,r-1)	1- pscdf(mu,r-1)	1- poisson cdf(mu,r-1)

TESTS FUNCTIONS SUMMARY on the TI - 83, 83+, 84+, 86, 89

TI-83: STAT $>$ TESTS
TI-86: $2^{\text {nd }}$ MATH MORE F2 or F3:STAT F1:TESTS (menu location of STAT may vary on different calculators)

TI-89: APPS 1: FlashApps Highlight Stats/List Editor and press ENTER $2^{\text {nd }}$ F6: Tests

Z-Test ZTest	Hypothesis test for a single mean, population standard deviation known
T-Test TTest	Hypothesis test for a single mean, population standard deviation unknown, underlying populations approximately normally distributed
2-SampZTest Zsam2	Hypothesis test of the equality of two population means, independent samples, population standard deviations known
2-SampTTest Tsam2	Hypothesis test of the equality of two population means, independent samples, population standard deviations unknown, underlying populations approximately normally distributed
1-PropZTest ZPrp1	Hypothesis test of a single proportion
$\begin{aligned} & \text { 2-PropZTest } \\ & \text { ZPrp2 } \end{aligned}$	Hypothesis test of the equality of two population proportions
ZInterval ZInt1	Confidence interval for a single mean, population standard deviation known
TInterval TInt1	Confidence interval for a single mean, population standard deviation unknown, underlying populations approximately normally distributed
2-SampZ Int ZInt2	Confidence interval for the difference between two means, population standard deviations known
2-SampT Int TInt2	Confidence interval for the difference between two means, population standard deviations unknown, underlying populations approximately normally distributed
1-PropZInt ZInt1	Confidence Interval for a single population proportion
$\begin{aligned} & \text { 2-PropZInt } \\ & \text { ZInt2 } \end{aligned}$	Confidence Interval for the difference between two population proportions
χ^{2} Test Chitst Chi2 2-way	Hypothesis test of independence for a contingency table stored in a matrix. Expected values are calculated and placed in a separate matrix
$\begin{aligned} & \chi^{2} \text { GOF Test } \\ & \text { (TI-84 \& } 89 \text { Only) } \end{aligned}$	Hypothesis test for Goodness of Fit Observed and expected data counts must be placed in lists
2-SampFTest Fsam2	Hypothesis test of the equality of two population standard deviations
LinRegTTest TLinR	Hypothesis test of the signficance of the correlation coefficient in linear regression
ANOVA	Hypothesis test of the equality of means of multiple populations using one way analysis of variance for sample data entered into lists

LINEAR REGRESSION:

Example demonstrating Linear Regression, Correlation and Scatter Plot

Given the data set: $(3,5),(6,8),(9,7),(5,20)$.
The xlist is $3,6,9,5$ and the y list is $5,8,7,20$.
Put the xlist into L1 and the ylist into L2.

Constructing a Scatter Plot:

Make sure you are in the Stat/List Editor (see page 1 of these instructions) and that you have entered your lists in L1 and L2
Press F2:Plots 1:Plot Setup Highlight Plot 1 and make sure there are no checks next to any other plots. If there are, arrow to the plot and press F4 to uncheck them. Then arrow back to Plot 1 .
Press F1:Define. to define the plot
For Plot Type, press the right arrow and press 1:Scatter.
Arrow down, press the right arrow and press 1:Box.
Arrow down to x. Press alpha L1. Arrow down to y and press alpha L2.
Arrow down to "Use Freq and Categories?" and use the right arrow. Highlight NO and press Enter.
Press Enter again.
Press F5 Zoomdata. You should see the scatterplot. Press F3 to trace and the arrow keys to see the coordinates of the points.

Calculating the Regression Equation: METHOD 1

Make sure you are in the Stat/List Editor (see page 1 of these instructions)
Press F4: Calc 3:Regressions 1:LinReg (ax+b)
For x List, enter alpha L1. Arrow down. For y List, enter alpha L2.
For "Store RegEqn to:", arrow right and arrow down to y 1 (x) (or any one of the y 's) and press Enter.
Press Enter.
You should see a screen with $\mathrm{a}, \mathrm{b}, \mathrm{r}^{2}$, and r on it. The regression is complete.
Write down the equation from the information and press Enter.
The linear regression is yhat $=11.2267-.2133 \mathrm{x}$

Calculating the Regression Equation: METHOD 2 Linear Regression T-Test

Make sure you are in the Stat/List Editor (see page 1 of these instructions)
Press $2^{\text {nd }}$ F6: Test A:LinRegTTest
For x List, enter alpha L1. Arrow down. For y List, enter alpha L2
For Freq, enter 1
For "Alternate Hyp", arrow right and arrow down to the alternate hypothesis you wish to use in your hypothesis test of the significance of the correlation coefficient (generally \neq) and press Enter
For "Store RegEqn to" arrow right and arrow down to yl to store the regression equation as equation yl (or make another selection if you wish); then press Enter.
For "Results" arrow right and arrow down to Calculate and press Enter.
Press Enter again to perform the regression.
You should see a screen withy $=a+b x$ at the top. The screen contains the results of the hypothesis test of the correlation coefficient, the regression equation, the correlation coefficient and coefficient of determination, and the standard error s . The regression is complete.

Drawing the Regression Line:

Press the key with the green diamond on it (it is below the 2nd key) and press $\mathrm{Y}=$ (above the F 1 key). The regression equation should appear in your equation editor. If it does not, enter it in $\mathrm{y} 1(\mathrm{x})$.
Make sure all other equations are cleared out.
Press the key with the green diamond on it and press GRAPH (above the F3 key). The line will be drawn.

Graphical Representation of Outliers for Linear Regression

You need to have used Method 2 of performing the linear regression in order to obtain the value of the standard error s
Enter the equation editor and input two new equations.
$\mathrm{Y} 2=\mathrm{Y} 1-2 *$ (value of s$)$
$\mathrm{Y} 3=\mathrm{Y} 1+2 *($ value of s$)$
You should input the value of s that you obtained by performing linear regression using method 2 with the LinRegTTest
Press the key with the green diamond on it and press GRAPH (above the F3 key).
The calculator will then draw 3 lines. The linear regression line will be the middle line. The lines for equations Y2 and Y3 are drawn at a distance of 2 standard deviations below and above the linear regression line. Any points lying between the two outer lines are NOT outliers. Any points lying above the upper line or below the lower line are outliers. Use trace to identify the data values for the outliers.

Outlier Calculations for Linear Regression (for Collaborative Statistics by Dean/Illowsky):

When you do Linear Regression, a list called "resid" is created automatically.
This list has the " y - yhat" values in it.
Go into Flashapps and into your lists.
Arrow to "resid" so you see it.
Then, arrow to the list name L3. Press F3.
Press 1:names. Arrow down to STATVARS. If it is not checked, press F4.
Then, arrow down to resid. Press Enter. Press ${ }^{\wedge} 2$. Press Enter. L3 will have the (y - yhat) ${ }^{\wedge} 2$ values.
Press HOME and Press F1 8 to clear it.
Press 2nd MATH. Press 3:List. Press 6:Sum. Press alpha L3).
Depending on how you have MODE Display Digits set, you should see approximately 137.1467. This is the SSE.
Calculate s. (You should be HOME.) Press clear.
Press the square root symbol and enter 137.1467/2). (You get the denominator by taking the number of data points and subtracting 2: 4-2 $=2$.)
Press Enter. You should see 8.2809 (to 4 decimal places).
Press the times key and enter 1.9. Press Enter. You should see 15.7337.
Press clear. Press 2nd VAR-LINK.
Arrow down to resid (it is below STAT VARS). Press Enter. Press Enter again.
Arrow up to the list. Scroll through the list using the arrow keys.
Compare 15.7337 to the absolute values of the numbers in the list. If any absolute value is greater than or equal to 15.7337 , then the corresponding point is an outlier.
Absolute values of the numbers in the list are approximately 5.59, 1.95, 2.31, 9.84.
None of them are greater than or equal to 15.7337 .
Therefore, for this data set, no point is an outlier.
Thank you to Susan Dean at De Anza College for to the contributing TI-89 instructions for linear regression.

CHI SQUARE TEST FOR INDEPENDENCE on the TI-89

To Create a Matrix to use in a Test of Independence on the TI-89

Press APPS 6:Data/Matrix Editor
Press 3:New
Arrow over and down to 2:Matrix.
Press Enter
Arrow down to Folder. Either use the one that is there or arrow over and down to another folder name (don't use statvars) and press Enter.
Arrow down to Variable and enter a name you will remember.
Arrow down to Row dimension and enter the number of rows you want.
Arrow down to Column dimension and enter the number of columns you want.
(Note: You can change these numbers if you want for a different problem.)
Press Enter until you will see your matrix with zeroes as the entries. Fill in your matrix with the data from the table.

To change the size of your matrix, press APPS 6:Matrix/Data Editor 2:Open.
Then fill in the OPEN screen with Matrix, the correct folder, and the correct name of your matrix.
Press Enter until you see your matrix.
To resize it, press F6 Util 6:Resize Matrix. Enter the row dimension and arrow down to column dimension and enter that number. Press Enter until you see your resized matrix.

To Perform a Chi Square Test of Independence

Press APPS
Press 1:Flashapps
Press Enter
Press F6 TESTS
Press 8:Chi2 2-way
Enter the name of your matrix at Observed Mat:
Press Enter.
You should see the screen with the test statistic and the p-value.

Thank you to Susan Dean at De Anza College for to the contributing TI-89 instructions for chi square tests.

TI 89 TITRNHUM

Hypothesis Tests and Confidence Intervals

The position of the graphically represented keys can be found by moving your mouse on top of the graphic. The row of function keys: $f 1, \mathfrak{f} 2$, etc. do not count as a row. Row 1 starts with the blue 2 nd key.

Entering data

Press APPS, then arrow over to the Stats/List Editor. (It should be 3 down arrows and two right arrows.) Press ENTER	ENTER. Now follow the instructions below.

one variable
Enter the x-values one by one, pressing $\operatorname{ENTER}^{\text {after each one. }}$

two variables

Enter the x-values one by one, pressing $\operatorname{ENTER}^{\text {after each one. }}$ Press $>$ to get to the second column. Enter the y-values one by one, pressing ENTER after each one.

Running hypothesis tests

The problem is to test the hypothesis $-\mathrm{H}_{0}: \mu=\mu_{0}$ We are doing a double sided test. Assume the standard deviation iso

Z-Test

1. Press 2ND F (The F6 menu should drop).
2. Now press 1 for Z-Test....
3. Press ENTER to accept Data input method as Data.
4. Enter μ_{0} and press
5. Enter σ and press

6. Enter list1 in the List: area. You only have to do this once. The calculator will remember it for future calculations.
7. Press
 to accept 1 as Freq.
8. Press if you wish to choose a different hypothesis test. Arrow to your choice and
press ENTER. (Choices are $\mu \neq \mu_{0}, \mu<\mu_{0}$, and μ $>\mu_{0}$.)
9. Press ENTER to signal OK. A list in a new window will appear. The z-value appears in the second entry. The P Value appears in the third. See the below example for interpretation.

T-Test

Exactly as above, except press 2 for T-Test... (step $2)$ instead of 1 .

Computing confidence intervals

Z Interval

1. Press 2ND F2 (The F7 menu should drop).
2. Now press 1 for ZInterval....
3. Press ENTER to accept Data input method as Data.
4. Enter σ and press

5. Enter list1 in the List: area. You only have to do this once. The calculator will remember it for future calculations.
6. Press
 to accept 1 as Freq.
7. Enter a C Level (that is, confidence level. This will generally be .95 or .99 .) Press ENTER to signal OK.
8. A list in a new window will appear. The confidence level is the first entry.

T Interval

1. Press | $2 N D$ | F2 |
| :---: | :---: | drop).
2. Now press 2 for TInterval....
3. Press ENTER to accept Data input method as Data.
4. Enter list1 in the List: area. You only have to do this once. The calculator will remember it for future calculations.
5. Press \qquad
6. Enter a C Level (that is, confidence level. This will generally be .95 or .99.) Press ENTER Press ENTER again to signal OK. (If the correct C Level is already there, you only need to press ENTER once.
7. A list in a new window will appear. The confidence level is the first entry.

Worked Out Examples

In the following examples, we list the exact key sequence used to find the answer. We will list the keys by the main symbol on the key. In parentheses, we will list a helpful mnemonic, e.g. we will list e^{x} as | SHIFT | LN |
| :--- | :--- |
| (ex) | |

Run a Z-test on this list of numbers to test the hypothesis that $\mu=88$. Assume that $\sigma=2.7$.

$$
\begin{array}{llllllllll}
87 & 89 & 91 & 93 & 88 & 90 & 94 & 92 & 92 & 85
\end{array}
$$

Solution:

two sided test)
You should get a z value of 2.45954929 and a P Value of .013911171 . Because $P<0.05$, we reject the null hypothesis and conclude that the mean is not 88 .

Run a T-test on this list of numbers to test the hypothesis that $\mu=54$.

$$
\begin{array}{llllllllll}
51 & 60 & 54 & 57 & 54 & 55 & 59 & 52 & 52 & 58
\end{array}
$$

Solution:

$\boldsymbol{\nabla}$	$\boldsymbol{\nabla}$
(to accept the two sided test) $\left.\left.\begin{array}{l}\text { ENTER } \\ \hline\end{array}\right) . \begin{array}{ll} \\ \hline\end{array}\right)$	

You should get a t-value of 1.20267559 and a P Value of 0.259786095 . Since $P>0.05$, we cannot conclude that μ does not equal 54 .

Find a 99\% z-confidence interval for the row of numbers.
Assume σ is 2.7.

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline 87 & 89 & 91 & 93 & 88 & 90 & 94 & 92 & 92 & 85 \\
\hline
\end{array}
$$

Solution:

You should get a confidence interval of \{87.9,92.3\}.

Find a 95% t-confidence interval for the row of numbers.

3	1	4	1	5	9	2	6	5	3

Solution:

You should get a confidence interval of \{2.133, 5.667\}.

