

Figure 45

Figure 46

Hypothesis Testing for a Single Population Mean. Use as a null hypothesis $H_{0}: \mu=14$ for the data set ns and use a t-test. Hit 2nd [F6](Tests) $\rightarrow 2:$ T-Test. In the first window that comes up, choose Data. Put 14 for $\mu 0$, ns for List, 1 for Freq, and choose $\mu \neq \mu 0$ for Alternate Hyp. For Results, choose Calculate. See Figure 47. Then hit ENTER. The results window gives $t=.494324$ and $p=.627404$ along with other results. See Figure 48.

Figure 47

Figure 48

To get a graphical representation instead, choose Draw instead of Calculate for Results. The t and p values are given below the graph with the p equaling the shaded area. See Figure 49. Notice that you are now in the graph page.

Figure 49

Figure 50

If the population standard deviation \square is known, you can make use of the normal distribution by choosing [2nd[F6](Tests) $\rightarrow 1$:Z-Test instead of [2nd][F6](Tests) $\rightarrow 2:$ T-Test.

Hypothesis Testing for the Difference between Two Population Means. Use as a null hypothesis H_{0} : $\mu 1=\mu 2$ for the data sets ns and sm and use a t-test. Hit 2nd[F6](Tests) $\rightarrow 4: 2$-SampTTest. Again, choose Data in the first window that opens and then press ENTER. Put ns for List1, sm for List2, 1 for Freq1 and Freq2, $\mu 1<\mu 2$ for Alternate Hyp., No for Pooled, and Calculate for Results. See Figure 50. Notice that you have to scroll to get to all of the options. Then hit ENTER. The results window gives $\mathrm{t}=-2.43759$ and $\mathrm{p}=.010862$, along with other results. See Figure 51.

To get a graphical representation instead, choose Draw instead of Calculate for Results. The t and p values are given below the graph with the p equaling the shaded area. Again, notice that you are now in the graph page.

If the population standard deviations $\square 1$ and $\square 2$ are known, you can make use of the normal distribution by choosing 2nd [F6](Tests) \rightarrow 3: 2-SampZTest instead of 2nd [F6](Tests) \rightarrow 4:2-SampTTest.

Figure 51

Figure 52

Hypothesis Testing for comparing Two Standard Deviations. Use as a null hypothesis H_{0} : $\square 1=\square 2$ for the data sets ns and sm and use an F-test. We will also use as an alternate hypothesis H_{A} : $\square 1<\square 2$. Hit 2nd [F6](Tests) $\rightarrow 9$: 2-SampFTest. See Figure 42. Choose Data in the first window that opens and then press ENTER, filling in the rest of the boxes as in previous example (Figure 50). Then hit ENTER. The results window gives $\mathrm{F}=.82751$ and $\mathrm{p}=.351256$, along with other results. See Figure 52.

To get a graphical representation instead, choose Draw instead of Calculate for Results. The F and p values are given below the graph with the p equaling the shaded area. Recall that you are now in the graph page.

Hypothesis Testing for a Single Population Proportion. In a survey of injection drug users in a large city, 18 out of 423 , i.e. p-hat $=.0426$, were HIV positive. Can one conclude that fewer than 5% of the population of injection drug users in the city are HIV positive. Use $H_{0}: \mathrm{p}=.05$, so H_{A} : $\mathrm{p}<.05$. Hit 2nd[F6](Tests) \rightarrow 5: 1-PropZTest. Put in .05 for p0, 18 for Successes, $x, 423$ for n, Prop<p0 for Alternate Hyp., and Calculate for Results. Then hit ENTER. The results window gives $\mathrm{z}=-.702738$ and $\mathrm{p}=.241109$, along with other results. See Figure 53.

1 i	FFOF< PO			-
4	F0	$=.05$		
3	z	$=-.70273$ 日		
2	F Value	$=.241109$		
1	P_hat	$=.042553$		
1		$=423$.		
--	Enter=	K		
Vame=				
MAIN		Find AUTD	FUNC	$13 / 12$

Figure 53

Figure 54

To get a graphical representation instead, choose Draw instead of Calculate for Results. The z and p values are given below the graph with the p equaling the shaded area. Recall that you are now in the graph page.
Hypothesis Testing for the Difference between Two Population Proportions. Return to the situation where 18 of 96 boys and 60 of 123 girls attempted suicide. Use as a null hypothesis $H_{0}: \mathrm{p} 1=\mathrm{p} 2$ with $H_{\mathrm{A}}: \mathrm{p} 1<\mathrm{p} 2$. Hit 2nd[[F6](Tests) $>$ 5: 2-PropZTest. For Successes,x1, enter 18; for n1, enter 96; for Successes, x2, enter 60; for n2, enter 123; and for Alternate Hyp., p1<p2. Then hit ENTER. The results window gives $\mathrm{z}=-4.60485$ and $\mathrm{p}=.000002$, along with other results. See Figure 54.

One-Way Anova. Enter three lists in the calculator, $\mathrm{a} 1=\{7,4,6,6,5\}$, $a 2=\{6,5,5,8,7\}$, and $\mathrm{a} 3=\{4,7,6,7,6\}$. The null hypothesis here is $H_{0}: \mu 1=\mu 2=\mu 3$ with H_{A} : not all of $\mu 1, \mu 2, \mu 3$ are equal. To run the test, hit 2nd[F6](Tests) \rightarrow C: ANOVA. In the first window that opens, choose Data and 3 for Number of Groups, and then hit ENTER. Complete the second window as in Figure 55. Then hit

ENTER. The results window gives $\mathrm{F}=.311111$ and $\mathrm{p}=.738367$, along with other results, some of which you have to scroll to see. See Figure 56.

Figure 55

Figure 56

Three new lists appear in the List Editor, as seen in Figure 57. The three lists are xbarlist (the means of the three lists) and lowlist and uplist, the left and right endpoints of the 95% confidence interval for each mean. For instance, the mean of list a1 is 5.6 and the 95% confidence interval for that mean is (4.4066,6.7934).

Figure 57

Figure 58

We see the means x-bar of the three lists are 5.6, 6.2, and 6 . We can find that the standard deviations Sx are $1.14018,1.30384$, and 1.22474 , and each list has a sample size of 5 . If you had chosen the Stats option instead of Data, for each group you enter a list $\{n, x b a r, s x\}$ as prompted on the screen. See Figure 58. Then press ENTER to get the same results as before.
Two-Way Anova. Enter four lists in the calculator, $\mathrm{a} 21=\{7,4,6,6,5,6\}$, $22=\{6,5,5,8,7,7\}$, $\mathrm{a} 23=\{4,7,6,7,6,6\}$, and $\mathrm{a} 24=\{4,7,8,9,5,7\}$. ANOVA2-Way computes a two-way analysis of variance for comparing the means of two to twenty populations (levels of factor A called Lvls of Col Factor). In the 2 Factor, Equal Repetitions design, each of the considered populations has an equal number of levels of factor B (Lvls of Row Factor). In the Block design, the levels of factor B are equal to the block. The ANOVA2-Way procedure compares the means of the experimental factors, factor A, factor B , and factor AB (the interaction effect). For each of the experimental factors, the null hypothesis H_{0} : $\mu 1=\mu 2=\ldots=\mu \mathrm{k}$ is tested against the alternative hypothesis H_{A} : not all of $\mu 1, \mu 2, \ldots, \mu \mathrm{k}$ are equal. In the case of the Block design, there is no interaction effect.

Consider the Block design first. To run the test, hit 2nd [F6](Tests) \rightarrow D: ANOVA2-WAY. In the first window that opens, choose Block for Design and 4 for Lvls of Col Factor, and then hit ENTER. Complete the second window as in Figure 59. Then hit ENTER. The results window gives first, under Factor, an $\mathrm{F}=.704225$ and $\mathrm{p}=.56416$ for the treatment (column) factor. See Figure 60. Scrolling down, in Figure 61 you see the $\mathrm{F}=1.56338$ and $\mathrm{p}=.229969$ for the Block factor. You can also see that further scrolling will provide the Error results.

Figure 61

Figure 62

Now to the 2 Factor, Equal Repetitions design. Hit 2nd[F6](Tests)->D: ANOVA2-WAY. In the first window that opens, choose 2 Factor, Eq Reps for Design, 4 for Lvls of Col Factor, 2 for Lvls of Row Factor, and then hit ENTER. Complete the second window as in Figure 59 above. Then hit ENTER. The results window gives first, under Column Factor, an $\mathrm{F}=.620155$ and $\mathrm{p}=.612083$. See Figure 62. Scrolling down, under Row Factor, you get $\mathrm{F}=2.32558$ and $\mathrm{p}=.146785$, and under Interaction, you get $\mathrm{F}=.589147$ and $\mathrm{p}=.630932$. You can also see that further scrolling will provide the Error results.

Chi-Square Goodness of Fit. Chi2 GOF performs the chi square goodness of fit test to confirm that sample data is from a population that conforms to a specified distribution. For example, Chi2 GOF can confirm that the sample data came from a normal distribution. Enter two lists in the calculator, ch $1=\{16,25,22,8,10\}$ (the observed values) and ch $2=\{9,12,9,8,7\}$ (the expected values if the data were from a particular distribution. To run the test, hit 2nd[F6](Tests) $\rightarrow 7$: Chi2 GOF. In the window that opens, choose ch1 for Observed List, ch2 for Expected List, Calculate for Results, and then hit

Figure 63

Figure 64

ENTER. The results window gives $\square^{2}=39.5913$ and $p=1.30073 \mathrm{E}-8=.000000013$. See Figure 63. You will also find a new list in the List Editor, complist, which gives the element by element contributions to \square^{2}, the sum of the items in the list. See Figure 64.

To get a graphical representation instead, choose Draw instead of Calculate for Results. The \square^{2} and p values are given below the graph with the p equaling the shaded area.

Chi-Square Test of Independence. First enter a matrix of observed values. Call this matrix ob. Here use $o b=$| 23 | 4 | 10 |
| :---: | :---: | :---: |
| 0 | 14 | 35 | . To enter the matrix, return to the home page ([HOME) and hit APPS \rightarrow 6:Data/Matrix Editor \rightarrow 3:New. Choose Matrix for Type, main for folder, type in ob for Variable, 2 for Rows, 3 for Columns, and then hit ENTER. See Figure 65. Then continue by hitting each number in succession followed by ENTER. See Figure 66. When you are finished, hit HOME. Then return to the List Editor.

Figure 65

Figure 66

To run the test, hit 2nd][F6](Tests) $->8$: Chi2 2-way. In the window that opens, enter ob for Observed Mat, statvarslexpmat (the default) for Store Expected to, statvars\compmat (the default) for Store CompMat to, Calculate for Results (see Figure 67), and then hit ENTER.

Figure 67

Figure 68

The null hypothesis is that there is no association between the row and column variable, with the alternative hypothesis being that the variables are related. From Figure 68, you get a \square^{2} of 20.6062 and a p-value of .000034.

To see the expected matrix, from the home page hit APPS $->6$:Data/Matrix Editor \rightarrow 2:Open. In the window that opens, choose Matrix for Type, statvars for folder, expmat for Variable, and hit ENTER. The matrix is in Figure 69. You can do the same to get compmat, the matrix of component contributions whose sum is \square^{2}. See Figure 70.

To get a graphical representation instead, choose Draw instead of Calculate for Results. The \square^{2} and p values are given below the graph with the p equaling the shaded area

Figure 69

Figure 70

Hypothesis Testing for the slope and correlation coefficient in Linear Regression using \boldsymbol{t}. Return to the earlier linear regression example using listx and listy. LinRegTTest (linear regression t test) computes a linear regression on the given data and $\mathrm{a} t$ test on the value of slope b and the correlation coefficient r for the equation $y=a+b x$. It tests the null hypothesis $H_{0}: b=0$ (equivalently, $r=0$) against one of the following alternatives: $H_{\mathrm{A}}: \mathrm{b} \neq 0$ and $\mathrm{r} \neq 0, H_{\mathrm{A}}: \mathrm{b}<0$ and $\mathrm{r}<0$, or $H_{\mathrm{A}}: \mathrm{b}>0$ and $\mathrm{r}>0$. The first option will be used here. To run the test, from within the List Editor hit 2nd[F6](Tests) \rightarrow A: LinRegTTest. Fill in the window that opens as in Figure 71. Then hit ENTER to get the results window. See Figure 72. You see that you get $t=4.23937$ and $p=.002176$. Thus you can conclude that there is a linear relationship between the variables. You can see that the regression equation is $y=3.00245+.499727 x$ with a standard error of the estimate $s=1.23631$, and by scrolling down, that the coefficient of determination $\mathrm{r}^{2}=.666324$ and the correlation coefficient is $\mathrm{r}=.816287$. Resid, the list of residuals of the regression, is also added to the List Editor.

Figure 71

Figure 72

Hypothesis Testing for Multiple Regression. Return to the earlier multiple regression example using listx1, listx2, and listy1. MultRegTests computes a multiple regression on the given data yielding an equation $\mathrm{Y}=\mathrm{B} 0+\mathrm{B} 1 * \mathrm{X} 1+\mathrm{B} 2^{*} \mathrm{X} 2$, an F test on the hypotheses $H_{0}: \mathrm{B} 1=\mathrm{B} 2=0$ with H_{A} : not both $\mathrm{B} 1, \mathrm{~B} 2$ equal to $0, t$ tests on the coefficients $\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3$, and the coefficient of determination. To run the test, from within the List Editor hit [2nd[F6](Tests) \rightarrow B: MultRegTests. Fill in the window that opens as in Figure 73. Then hit ENTER to get the results window. See Figure 74. You see that you get $F=112.333$ and $p=.008824$. Thus you can conclude that there is a linear relationship between the variables. You can see that the coefficient of multiple determination $R^{2}=.991176$ and the standard error of the estimate is $S=.210042$. Several columns have been added to the List Editor. From the column blist we get the coefficients for the regression, yielding the equation $Y=3.5882+1.000^{*} \mathrm{X} 1-.1765^{*} \mathrm{X} 2$. Two columns to the right of blist is tlist, giving the t values for the corresponding B ' s, and one column to the right of that is plist, giving the corresponding p -values.

Figure 73

Figure 74

