## (10.1) Inverse Functions

## Objectives

1 Decide whether a function is one-to-one and, if it is, find its inverse.
2 Use the horizontal line test to determine whether a function is one-to-one.

3 Find the equation of the inverse of a function.
4 Graph $f^{-1}$ given the graph of $f$.

Decide whether a function is one-to-one and, if it is, find its inverse.

One-to-One Function
In a one-to-one function, each $x$-value corresponds to only one $y$-value, and each $y$-value corresponds to only one $x$-value.

Decide whether a function is one-to-one and, if it is, find its inverse.

## Inverse of a Function

The inverse of a one-to-one function $f$, written $f^{-1}$, is the set of all ordered pairs of the form $(y, x)$, where $(x, y)$ belongs to $f$. Since the inverse is formed by interchanging $x$ and $y$, the domain of $f$ becomes the range of $f^{-1}$ and the range of $f$ becomes the domain of $f^{-1}$.

```
*aumoin The symbol }\mp@subsup{f}{}{-1}(x)\mathrm{ does not represent }\frac{1}{f(x)}\mathrm{ .
```

Use the horizontal line test to determine whether a

## Horizontal Line Test

A function is one-to-one if every horizontal line intersects the graph
function is one-to-one. of the function at most once.

CLASSROOM
Finding Inverses of One-to-One Functions
Decide whether each function is one-to-one. If it is, find the inverse.
$\{(2,5),(3,6),(4,8),(8,7)\}$
Solution:
Each $x$-value corresponds to only one $y$-value, and every $y$-value corresponds to only one $x$-value. The function is one-to-one.
$\{(5,2),(6,3),(8,4),(7,8)\}$
$\{(0,3),(-1,2),(1,3)\}$
Each $x$-value corresponds to just one $y$-value. However, the $y$-value 3 corresponds to both 0 and 1. The function is not one-to-one.


## Find the equation of the inverse of a function.

Finding the Equation of the Inverse of $y=f(x)$
For a one-to-one function $f$ defined by an equation $y=f(x)$, find the defining equation of the inverse as follows.

Step 1 Interchange $x$ and $y$.

Step 2 Solve for $y$.
Step 3 Replace $y$ with $f^{-1}(x)$.

## CLASSROOM <br> EXAMPLE 3 <br> Finding Equations of Inverses

Decide whether the equation defines a one-to-one function. If so, find the equation that defines the inverse.
$f(x)=3 x-4$

## Solution:

The graph of $y=3 x-4$ is a nonvertical line, so by the horizontal line test, $f$ is a one-to-one function.

$$
\begin{aligned}
y & =3 x-4 \\
x & =3 y-4 \\
3 y & =x+4 \\
y & =\frac{x+4}{3} \longrightarrow f^{-1}(x)=\frac{x+4}{3}
\end{aligned}
$$

## Objective 4

Graph $f^{-1}$ from the graph of $f$.

## CLASSROOM Finding Equations of Inverses (cont'd) EXAMPLE 3

Decide whether each equation defines a one-to-one function. If so, find the equation that defines the inverse.
$f(x)=x^{3}+1$
Solution:
The graph of a cubic equation is one-to-one.

$$
\begin{aligned}
y & =x^{3}+1 \\
x & =y^{3}+1 \\
y^{3} & =x-1 \\
y & =\sqrt[3]{x-1} \longrightarrow f^{-1}(x)=\sqrt[3]{x-1}
\end{aligned}
$$

$f(x)=(x-3)^{2}$
The graph is a vertical parabola. The function is not one-to-one.
$\begin{aligned} & \text { CLASSROOM } \\ & \text { EXAMPLE } 4\end{aligned}$
Graphing the Inverse
Use the given graph to graph the inverse of $f$.

Solution:



