(10.2) Exponential Functions

Objectives
1 Define an exponential function.
2 Graph an exponential function.
3 Solve exponential equations of the form $a^{x}=a^{k}$ for x.
4 Use exponential functions in applications involving growth or decay.

Objective 2

Graph an exponential function.

Slide 10.2-3

```
    CLASSROOM Graphing an Exponential Function (a>1)
    EXAMPLE 1
Graph f(x)=10x
```


Solution

Choose values of x and find the corresponding values of y.

x	$f(x)=10^{x}$
-2	0.01
-1	0.1
0	1
1	10
2	100

Graph an exponential function.

CLASSROOM	
EXAMPLE 2	Graphing an Exponential Function $(0<a<1)$

Graph $g(x)=(1 / 4)^{x}$.
Solution:
Choose values of x and find the corresponding values of y.

x	$g(x)=(1 / 4)^{x}$
-2	16
-1	4
0	1
1	$1 / 4$
2	$1 / 16$

Define an exponential function.

Exponential Function

For $a>0, a \neq 1$, and all real numbers x,
$f(x)=a^{x}$
defines the exponential function with base \boldsymbol{a}.

The graph of an exponential function approaches the x -axis, but does not touch it.

Objective 3

Solve exponential equations of the form $a^{x}=a^{k}$ for x.

Solve exponential equations of the form $a^{x}=a^{k}$ for \boldsymbol{x}.
An exponential equation is an equation that has a variable in an exponent, such as $9^{x}=27$.

Property for Solving an Exponential Equation
For $a>0$ and $a \neq 1$, if $\boldsymbol{a}^{x}=\boldsymbol{a}^{y}$ then $x=y$.
Solve exponential equations of the form $a^{x}=a^{k}$ for x.
Solving an Exponential Equation

Step 1 Each side must have the same base. If the two sides of the equation do not have the same base, express each as a power of the same base if possible.

Step 2 Simplify exponents if necessary, using the rules of exponents.

Step 3 Set exponents equal using the property given in this section.

Step 4 Solve the equation obtained in Step 3.

CLASSROOM

Solving an Exponential Equation
EXAMPLE 4
Solve the equation $25^{x}=125$
Solution:
Step 1 Write each side with the base 5.

$$
\left(5^{2}\right)^{x}=5^{3}
$$

Step 2 Simplify exponents.

$$
5^{2 x}=5^{3}
$$

Step 3 Set the exponents equal.

$$
2 x=3
$$

Step 4 Solve.

$$
x=\frac{3}{2}
$$

classroom EXAMPLE 5	Solving Exponential Equations
Solve the equation.	
$25^{x-2}=125^{x}$	Check
Solution:	$25^{-4-2}=125^{-4}$
$\left(5^{2}\right)^{x-2}=\left(5^{3}\right)^{x}$	$\left(5^{3}\right)^{x} \quad 25^{-6}=125^{-4}$
$5^{2(x-2)}=5^{3 x}$	$5^{3 x} \quad 4.096 \times 10^{-9}=4.096 \times 10^{-9}$
$2(x-2)=3 x$	$3 x$
$2 x-4=3 x$	
-4	

The solution set is $\{-4\}$.
Solve the equation.
$4^{x}=\frac{1}{32}$
Solution:

$$
\begin{aligned}
\left(2^{2}\right)^{x} & =\frac{1}{2^{5}} & & \text { Check } \\
\left(2^{2}\right)^{x} & =2^{-5} & & 4^{-5 / 2}=\frac{1}{4^{5 / 2}}=\frac{1}{2^{5}}=\frac{1}{32} \\
2 x & =-5 & & \text { True } \\
x & =-\frac{5}{2} & &
\end{aligned}
$$

The solution set is $\left\{-\frac{5}{2}\right\}$.

\section*{| CLASSROOM | |
| :---: | :---: |
| EXAMPLE 5 | Solving Exponential Equations (cont'd) |}

Solve the equation.
$\left(\frac{3}{4}\right)^{x}=\frac{16}{9}$
Solution:

$$
\begin{aligned}
& \left(\frac{3}{4}\right)^{x}=\left(\frac{4}{3}\right)^{2} \\
& \text { Check } \\
& \left(\frac{3}{4}\right)^{-2}=\left(\frac{4}{3}\right)^{2}=\frac{16}{9} \\
& \left(\frac{3}{4}\right)^{x}=\left(\frac{3}{4}\right)^{-2} \\
& \text { True } \\
& x=-2 \\
& \text { The solution set is }\{-2\} \text {. }
\end{aligned}
$$

Objective 4

Use exponential functions in applications involving growth or decay.

CLASSROOM EXAMPLE 7

Applying an Exponential Decay Function
The atmospheric pressure (in millibars) at a given altitude x, in meters, can be approximated by the function defined by $f(x)=1038(1.000134)^{-x}$
Use the function to find the pressure at 8000 m .
Solution:

$$
\begin{aligned}
f(x) & =1038(1.000134)^{-x} \\
f(8000) & =1038(1.000134)^{-8000} \\
& \approx 355
\end{aligned}
$$

The pressure is approximately 355 millibars.

