

Define a logarithm.

For all positive numbers a, with $a \neq 1$, and all positive numbers x, $y=\log _{2} x$ means the same as $x=a y$.

Convert between exponential and logarithmic forms.

The table shows several pairs of equivalent forms.

Exponential Form $3^{2}=9$	Logarithmic Form $\log _{3} 9=2$
$\left(\frac{1}{5}\right)^{-2}=25$	$\log _{1 / 5} 25=-2$
$10^{5}=100,000$	$\log _{10} 100,000=5$
$4^{-3}=\frac{1}{64}$	$\log _{4} \frac{1}{64}=-3$

CLASSROOM EXAMPLE 1
Fill in the blanks with the equivalent forms.
Solution:

Exponential Form	Logarithmic Form
$2^{5}=32$	$\log _{2} 32=5$
$100^{\frac{1}{2}}=10$	$\log _{100} 10=\frac{1}{2}$
$8^{\frac{2}{3}}=4$	$\log _{8} 4=\frac{2}{3}$
$6^{-4}=\frac{1}{1296}$	$\log _{6} \frac{1}{1296}=-4$

CLASSROOM
EXAMPLE 2
Solving Logarithmic Equations
Solve logarithmic equations of the form $\log _{a} b=k$ for a, b, or k
$\log _{3} x=-3 \quad$ Solve the equation.
Solution:

$$
\begin{aligned}
& x=3^{-3} \\
& x=\frac{1}{3^{3}}=\frac{1}{27}
\end{aligned}
$$

The input of the logarithm must be a positive number.
The solution set is $\left\{\frac{1}{27}\right\}$.

CLASSROOM
EXAMPLE 2 Solving Logarithmic Equations (cont'd)
Solve the equation.
$\log _{1 / 3}(2 x+5)=2$

$$
\begin{aligned}
& \text { Solution: } \begin{aligned}
2 x+5 & =\left(\frac{1}{3}\right)^{2} \\
2 x+5 & =\frac{1}{9} \\
18 x+45 & =1 \\
18 x & =-44 \\
x & =-\frac{44}{18}=-\frac{22}{9}
\end{aligned} \\
& \text { The solution set is }\left\{-\frac{22}{9}\right\} .
\end{aligned}
$$

CLASSROOM	
EXAMPLE 2	Solving Logarithmic Equations (cont'd)

Solve the equation
$\log _{x} 5=4$
Solution:

$$
\begin{aligned}
x^{4} & =5 \\
x & = \pm \sqrt[4]{5}
\end{aligned}
$$

Reject the negative solution since the base of a logarithm must be positive and not equal to 1 . The solution set is $\{\sqrt[4]{5}\}$.

Solve logarithmic equations of the form $\log _{a} b=k$ for a, b, or k.

Properties of Logarithms
For any positive real number b, with $b \neq 1$, the following are true
$\qquad \log _{b} \boldsymbol{b}=\mathbf{1} \quad$ and $\quad \log _{b} \mathbf{1}=\mathbf{0}$.

Properties of Logarithms

$\log _{b} b=1 \quad$ and $\quad \log _{b} 1=0$.

Define and graph logarithmic functions.

Logarithmic Function

If a and x are positive numbers, with $a \neq 1$, then

$$
g(x)=\log _{a} x
$$

defines the logarithmic function with base a.

Define and graph logarithmic functions.

Characteristics of the Graph of $\mathrm{g}(\mathrm{x})=\log _{\mathrm{a}} \mathrm{x}$

1. The graph contains the point $(1,0)$.
2. The function is one-to-one. When $a>1$, the graph will rise from left to right, from the fourth quadrant to the first. When $0<a<1$, the graph will fall from left to right, from the first quadrant to the fourth quadrant.
3. The graph will approach the y-axis, but never touch it. (The y-axis is an asymptote.)
4. The domain is $(0, \infty)$, and the range is $(-\infty, \infty)$.

$$
\begin{aligned}
& \begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 6
\end{array} \text { Solving an Application of Logarithmic Function } \\
& \text { Use logarithmic functions in applications involving growth or } \\
& \text { decay. } \\
& \text { A population of mites in a laboratory is growing according to the } \\
& \text { function defined by } P(t)=80 \log _{10}(t+10) \text {, where } t \text { is the number of } \\
& \text { days after a study is begun. } \\
& \text { Find the number of mites at the beginning of the study. } \\
& \text { Find the number present after } 90 \text { days. }
\end{aligned}
$$

CLASSROOM Solving an Application of Logarithmic Function (cont'd) EXAMPLE 6
$P(t)=80 \log _{10}(t+10)$
Find the number of mites at the beginning of the study.
Solution:

$$
\begin{aligned}
P(0) & =80 \log _{10}(0+10) \\
& =80 \log _{10} 10 \\
& =80(1) \\
& =80
\end{aligned}
$$

The number of mites at the beginning of the study is 80 .

CLASSROOM
EXAMPLE 6
$P(t)=80 \log _{10}(t+10)$
Find the number present after 90 days.
Solution:

$$
\begin{aligned}
P(90) & =80 \log _{10}(90+10) \\
& =80 \log _{10} 100 \\
& =80(2) \\
& =160
\end{aligned}
$$

The population after 90 days is 160 mites

