(10.4) Properties of Logarithms

Objectives
1 Use the product rule for logarithms.
2 Use the quotient rule for logarithms.
3 Use the power rule for logarithms.
4 Use properties to write alternative forms of logarithmic expressions.

Use the produt rule for logarithms.

Product Rule for Logarithms

If x, y, and b are positive real numbers, where $b \neq 1$, then the following are true.

$$
\log _{b} x y=\log _{b} x+\log _{b} y
$$

That is, the logarithm of a product is the sum of the logarithm of the factors.

The word statement of the product rule can be restated by replacing "logarithm" with "exponent." The rule then becomes the familiar rule for multiplying exponential expressions: The exponent of a product is the sum of the exponents of the factors.

Use the quotient rule for logarithms.

Quotient Rule for Logarithms

If x, y, and b are positive real numbers, where $b \neq 1$, then the following is true.

$$
\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y
$$

That is, the logarithm of a quotient is the difference between the logarithm of the numerator and the logarithm of the denominator.

$$
\begin{aligned}
\log _{8} 8 k, \quad k>0 & =\log _{8} 8+\log _{8} k \quad=1+\log _{8} k \\
\log _{5} m^{2}, \quad m>0 & =\log _{5}(m \cdot m) \\
& =\log _{5} m+\log _{5} m \\
& =2 \log _{5} m
\end{aligned}
$$

$$
\begin{aligned}
& \text { CLASSROOM } \\
& \text { EXAMPLE } 2
\end{aligned} \text { Using the Quotient Rule } .
$$

Objective 3
Use the power rule for logarithms.

Use the power rule for logarithms.

Power Rule for Logarithms

If x and b are positive real numbers, where $b \neq 1$, and if r is any real number then the following is true.

$$
\log _{b} x^{r}=r \log _{b} x
$$

That is, the logarithm of a number to a power equals the exponent times the logarithm of the number

CLASSROOM	
EXAMPLE 3	Using the Power Rule

Use the power rule to rewrite each logarithm. Assume $a>0, b>0$, $x>0, a \neq 1$, and $b \neq 1$.

Solution:
$\log _{3} 5^{2} \quad=2 \log _{3} 5$
$\log _{a} x^{4} \quad=4 \log _{a} x$
$\log _{b} \sqrt{8} \quad=\log _{b} 8^{1 / 2}=\frac{1}{2} \log _{b} 8$
$\log _{2} \sqrt[7]{x^{4}}=\log _{2} x^{4 / 7}=\frac{4}{7} \log _{2} x$

Use the power rule for logarithms.

$$
\begin{aligned}
& \text { Special Properties } \\
& \text { If } b>0 \text { and } b \neq 1 \text {, then the following are true. } \\
& b^{\log _{b} x}=x, \quad x>0 \quad \text { and } \quad \log _{b} b^{x}=x
\end{aligned}
$$

```
CLASSROOM Using the Special Properties
EXAMPLE 4
Use the special properties to find each value.
Solution:
log 105}=
\mp@subsup{\operatorname{log}}{2}{}8=\mp@subsup{\operatorname{log}}{2}{}\mp@subsup{2}{}{3}=3
```


Use the power rule for logarithms.
Properties of Logarithms If x, y, and b are positive real numbers, where $b \neq 1$, and r is any real number, then the following are true. Product Rule $\log _{b} x y=$ $\log _{b} x+\log _{b} y$ Quotient Rule Power Rule $\log _{b} \frac{x}{y}=\log _{b} x-\log _{b} y$ Special Properties$\quad \log _{b} x^{r}=r \log _{b} x$

Objective 4
Use properties to write alternative forms of logarithmic expressions.

CLASSROOM EXAMPLE 5	Writing Logarithms in Alternative Forms
USe the properties of logarithms to rewrite each expression if possible. Assume all variable represent positive real numbers.	
Solution:	
$\log _{6} 36 m^{5}$ $=\log _{6} 36+\log _{6} m^{5}$ $=2+5 \log _{6} m$ $\log _{2} \sqrt{9 z}$ $=\frac{1}{2} \log _{2}(9 z)$ $=\frac{1}{2}\left(\log _{2} 9+\log _{2} z\right)$ $=\frac{1}{2} \log _{2} 3^{2}+\frac{1}{2} \log _{2} z$ $=\frac{1}{2}\left(2 \log _{2} 3\right)+\frac{1}{2} \log _{2} z$ $=\log _{2} 3+\frac{1}{2} \log _{2} z$	

Use the properties of logarithms to rewrite the expression if possible. Assume all variable represent positive real numbers.
$\log _{b} \frac{8 r^{2}}{m-1} \quad(m>1, b \neq 1)$
Solution:

$$
\begin{array}{ll}
=\log _{b}\left(8 r^{2}\right)-\log _{b}(m-1) & \text { Quotient rule } \\
=\log _{b} 8+\log _{b} r^{2}-\log _{b}(m-1) & \text { Product rule } \\
=\log _{q} 8+2 \log _{q} r-\log _{q}(m-1) & \text { Power rule }
\end{array}
$$

$$
\begin{aligned}
& \text { CLASSROOM } \\
& \text { EXAMPLE } 5 \\
& \text { Use the properties of logarithms to rewrite each expression if } \\
& \text { possible. Assume all variable represent positive real numbers. } \\
& 2 \log _{b} x+3 \log _{b} y \quad(b \neq 1) \\
& =\log _{b} x^{2}+\log _{b} y^{3} \quad \text { Power rule } \\
& =\log _{b} x^{2} y^{3} \quad \text { Product rule }
\end{aligned}
$$

$\log _{4}(3 x+y)$
Cannot be rewritten.

CLASSROOM EXAMPLE 6
Given that $\log _{2} 5=2.3219$ and $\log _{2} 3=1.5850$, evaluate the following.

Solution:

$\log _{2} 25=\log _{2}(5 \cdot 5)$
$=\log _{2} 5+\log _{2} 5$
$=2.3219+2.3219$
$=4.6438$
$\log _{2} \frac{5}{3} \quad=\log _{2} 5-\log _{2} 3$
$=2.3219-1.5850$
$=0.7369$
$\log _{2} 75$
Solution:

$$
\begin{aligned}
& =\log _{2}\left(3 \cdot 5^{2}\right) \\
& =\log _{2} 3+\log _{2} 5^{2} \\
& =\log _{2} 3+2 \log _{2} 5 \\
& =1.5850+2(2.3219) \\
& =6.2288
\end{aligned}
$$

CLASSROOM

 EXAMPLE 7Deciding Whether Statements about Logarithms are True
Decide whether each statement is true or false.
Solution:
$\log _{6} 36-\log _{6} 6=\log _{6} 30$
Left side $=\log _{6} 36-\log _{6} 6=\log _{6} \frac{36}{6}=\log _{6} 6=1$
Right side $=\log _{6} 30 \quad$ False $\log _{6} 30 \neq 1$.
$\log _{4}\left(\log _{2} 16\right)=\frac{\log _{6} 6}{\log _{6} 36}$
Left side $\quad=\log _{4}\left(\log _{2} 16\right)=\log _{4}\left(\log _{2} 2^{4}\right)=\log _{4} 4=1$
Right side $=\frac{\log _{6} 6}{\log _{6} 36}=\frac{1}{\log _{6} 6^{2}}=\frac{1}{2} \quad$ False $1 \neq 1 / 2$.

