(10.5) Common and Natural Logarithms

Objectives
1 Evaluate common logarithms using a calculator
2 Use common logarithms in applications.
3 Evaluate natural logarithms using a calculator.
4 Use natural logarithms in applications.
5 Use the change-of-base rule.

Evaluate common logarithms using a calculator.

We use calculators to evaluate common logarithms.
We give most approximations for logarithms to four decimal places.

CLASSROOM EXAMPLE 2

Using pH in an Application
Find the pH of water with a hydronium ion concentration of $1.2 \times$ 10^{-3}. If it is taken from a wetland, is the wetland a rich fen, a poor fen, or a bog?

Solution:

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& =-\log \left(1.2 \times 10^{-3}\right) \\
& =-\left(\log 1.2+\log 10^{-3}\right) \\
& =-(\log 1.2-3 \log 10) \\
& =-[0.0792-3(1)] \\
& =-0.0792+3 \\
& =2.9208 \approx 2.9
\end{aligned}
$$

Since the pH is less than 3.0 , the wetland is a bog

CLASSROOM Finding Hydronium Ion Concentration

Find the hydronium ion concentration of a solution with pH 4.6 .
Solution:

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& 4.6=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
&-4.6=\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
&-4.6=\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& 10^{-4.6}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& 2.5 \times 10^{-5} \approx\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{aligned}
$$

Use common logarithms in applications.

The loudness of sound is measured in a unit called a decibel, abbreviated dB.

To measure with this unit, we first assign an intensity of I_{0} to a very faint sound, called the threshold sound.

If a particular sound has intensity I, then the decibel level of this louder sound is

$$
D=10 \log \left(\frac{I}{I_{0}}\right)
$$

Use common logarithms in applications.

Decibel Level	Example
60	Normal conversation
90	Rush hour traffic, lawn mower
100	Garbage truck, chain saw, pneumatic drill
120	Rock concert, thunderclap
140	Gunshot blast, jet engine
180	Rock launching pad

Source: Deafness Research Foundation

CLASSROOM
 EXAMPLE 4
 Measuring the Loudness of Sound

Find the decibel level to the nearest whole number of a whisper with intensity / of $115 \mathrm{I}_{0}$.

Solution:

$$
\begin{aligned}
D & =10 \log \left(\frac{I}{I_{0}}\right) \\
& =10 \log \left(\frac{115 I_{0}}{I_{0}}\right) \\
& =10 \log 115 \\
& \approx 10(2.06) \approx 21
\end{aligned}
$$

The level is about 21 dB .

Evaluate natural logarithms using a calculator.

Logarithms used in applications are often natural logarithms, which have as base the number e.

The number $e,(\approx 2.718281828)$, like π, is a universal constant. Since it is an irrational number, its decimal expansion never terminates and never repeats.

Objective 4

Use natural logarithms in applications.

The altitude in meters that corresponds to an atmospheric pressure of x millibars is given by the logarithmic function defined by
$f(x)=51,600-7457 \ln x$. Approximate the altitude at 700 millibars of pressure.

Solution:

$$
\begin{aligned}
f(x) & =51,600-7457 \ln x \\
f(700) & =51,600-7457 \ln 700 \\
& \approx 2748.6 \approx 2700
\end{aligned}
$$

Atmospheric pressure is 700 millibars at approximately 2700 m .

Objective 5

Use the change-of-base rule.

Use the change-of-base rule.

Change of Base Rule

If $a>0, a \neq 1, b>0, b \neq 1$, and $x>0$, then the following are true.

$$
\log _{a} x=\frac{\log _{b} x}{\log _{b} a}
$$

$$
\begin{aligned}
& \log _{a} x=\frac{\log _{b} x}{\log _{b} a} \\
& \begin{aligned}
\log _{3} 17 & =\frac{\log _{10} 17}{\log _{10} 3} \\
& =\frac{\log 17}{\log 3} \\
& \approx 2.5789
\end{aligned}
\end{aligned}
$$

In the equation, $x=1$ represents 1990.
Solution:
$f(x)=2014+384.7 \log _{2} x$
$f(19)=2014+384.7 \log _{2} 19$
$=2014+384.7\left(\frac{\log 19}{\log 2}\right)$
$=2014+384.7(4.2478)$
≈ 3648
The model indicates total crude oil imports of 3648 million barrels in 2006 , which is greater that the actual amount of 3571

