(1.1) Basic Concepts

Objectives

1 Write sets using set notation.
2 Use number lines.
3 Know the common sets of numbers.
4 Find the additive inverses.
5 Use absolute value.
6 Use inequality symbols.
7 Graph sets of real numbers.

Write sets using set notation.

When 0 is included with the set of natural numbers, we have the set of whole numbers, written

$$
W=\{0,1,2,3,4,5,6 \ldots\}
$$

The set containing no elements, such as the set of whole numbers less than 0 , is called the empty set, or null set, usually written \varnothing or \{ \}.

To write the fact that 2 is an element of the set $\{1,2,3\}$, we use the symbol \in (read "is an element of").

$$
2 \in\{1,2,3\}
$$

Do not write $\{\varnothing\}$ for the empty set. $\{\varnothing\}$ is a set with one element: \varnothing. Use the notation \varnothing or $\}$ for the empty set.

Write sets using set notation.

Two sets are equal if they contain exactly the same elements. For example, $\{1,2\}=\{2,1\}$ (Order does not matter.)
$\{0,1,2\} \neq\{1,2\}(\neq$ means "is not equal to"), since one set contains the element 0 while the other does not

Letters called variables are often used to represent numbers or to define sets of numbers. For example,

$$
\{x \mid x \text { is a natural number between } 3 \text { and } 15\}
$$

(read "the set of all elements x such that x is a natural number

Write sets using set notation.

A set is a collection of objects called the elements or members of the set

In algebra, the elements of a set are usually numbers. Set braces, \{ \}, are used to enclose the elements.

Since we can count the number of elements in the set $\{1,2,3\}$, it is a finite set.

The set $N=\{1,2,3,4,5,6 \ldots\}$ is called the natural numbers, or counting numbers.

The three dots (ellipsis points) show that the list continues in the same pattern indefinitely.

We cannot list all the elements of the set of natural numbers, so it is an infinite set.
between 3 and 15 " $\}$ defines the set $\{4,5,6,7, \ldots 14\}$.

Write sets using set notation.

The notation $\{x \mid x$ is a natural number between 3 and 15$\}$ is an example of set-builder notation.

CLASSROOM
 EXAMPLE 1
 Listing the Elements in Sets

List the elements in $\{x \mid x$ is a natural number greater than 12$\}$.

Solution:

$\{13,14,15, \ldots\}$

CLASSROOM	
EXAMPLE 2	Using Set-Builder Notation to Describe Sets

Use set builder notation to describe the set
$\{0,1,2,3,4,5\}$

Solution:

$\{x \mid x$ is a whole number less than 6$\}$

Use number lines.

The set of numbers identified on the number line above, including positive and negative numbers and 0 , is part of the set of integers, written

$$
I=\{\ldots,-3,-2,-1,0,1,2,3 \ldots\}
$$

Use number lines.

Each number on a number line is called the coordinate of the point that it labels while the point is the graph of the number.

The fraction $3 / 4$ graphed on the number line is an example of a rational number. A rational number can be expressed as the quotient of two integers, with denominator not 0 . The set of all rational numbers is written

$$
\left\{\left.\frac{p}{q} \right\rvert\, p \text { and } q \text { are integers, } q \neq 0\right\} .
$$

Use number lines.

The set of rational numbers includes the natural numbers, whole numbers, and integers, since these numbers can be written as fractions.
For example,

$$
20=\frac{20}{1}
$$

A rational number written as a fraction, such as $1 / 2$ or $1 / 8$, can also be expressed as a decimal by dividing the numerator by the denominator.

Decimal numbers that neither terminate nor repeat are not rational numbers and thus are called irrational numbers.
For example,

$$
\sqrt{2}=1.414213562 \ldots \text { and }-\sqrt{7}=-2.6457513 \ldots
$$

$\begin{gathered}\text { CLASSROOM } \\ \text { EXAMPLE } 4\end{gathered}$
Determining Relationships Between Sets of Numbers
Decide whether the statement is true or false. If it is false, tell why.
Solution:
Some integers are whole numbers.
\quad true
Every real number is irrational.
false; some real numbers are irrational, but others are rational numbers.

Find the additive inverses.

Change the sign of a number to get its additive inverse. The sum of a number and it additive inverse is always 0 .

Find the additive inverses.

Uses of the Symbol -

The symbol "-" is used to indicate any of the following:

1. a negative number, such as -9 or -15 ;
2. the additive inverse of a number, as in " -4 is the additive inverse of 4 ";
3. subtraction, as in 12-3.

Use absolute value.

The absolute value of a number a, written $|a|$, is the distance on a number line from 0 to a.

For example, the absolute value of 5 is the same as the absolute value of -5 because each number lies 5 units from 0 .

Slide 1.1-19

Use absolute value.

For any real number $a,|a|= \begin{cases}a & \text { if } a \text { is positive or } 0 \\ -a & \text { if } a \text { is negative. }\end{cases}$

Because absolute value represents distance, and distance is never negative, the absolute value of a number is always positive or 0 . Slide 1.1-20

	CLASSR EXAMPL	Finding Absolute Value			
	Simplify by finding each absolute value.				
	Solution:				
	$\|-3\|$	= 3			
	$-\|3\|$	$=-3$			
	-\|-3		$=-3$		
	$\|8\|+\|-1\|$	$=8+1=9$			
	$\|8-1\|=\|7\|=7$				
	Convishtie2012.2008.2004 PearsonEducation_lnc__S Slide 1.1-21				

CLASSROOM EXAMPLE 6		Comparing Rates of Change in Industries		
Of the customer service representatives and sewing machine operators, which will show the greater change (without regard to sign)?				
Occupation (2006-2016)			Total Rate of Change (in percent)	
Customer service representatives			24.8	
Home health aides			48.7	
Security guards			16.9	
Word processors and typists			-11.6	
File clerks			-41.3	
Solution:	Sewing machine operators		-27.2	
	Source: Bureau of Labor Statistics.			
Look for the number with the largest absolute value.				
sewing machine operators				

Use inequality symbols.

The statement

$$
4+2=6
$$

is an equation - a statement that two quantities are equal

The statement

$$
4 \neq 6 \text { (read " } 4 \text { is not equal to } 6 \text { ") }
$$

is an inequality - a statement that two quantities are not equal.
The symbol < means "is less than."

$$
8<9, \quad-7<16, \quad-8<-2, \text { and } \quad 0<4 / 3
$$

The symbol > means "is greater than."

$$
13>8, \quad 8>-2, \quad-3>-7 \quad \text { and } \quad 5 / 3>0
$$

Use inequality symbols.

\quad Inequalities on a Number Line
On a number line,
$\boldsymbol{a}<\boldsymbol{b}$ if a is to the left of $b ; \boldsymbol{a}>\boldsymbol{b}$ if \boldsymbol{a} is to the right of b.

You can use a number line to determine order

[^0]

Use inequality symbols.

In addition to the symbols $\neq,<$, and $>$, the symbols \leq and \geq are often used.

Symbol	Meaning	Example
\neq	is not equal to	$3 \neq 7$
$<$	is less than	$-4<-1$
$>$	is greater than	$3>-2$
\leq	is less than or equal to	$6 \leq 6$
\geq	is greater than or equal to	$-8 \geq-10$

Graph sets of real numbers.

Inequality symbols and variables are used to write sets of real numbers. For example, the set

$$
\{x \mid x>-2\}
$$

consists of all the real numbers greater than -2 .

On a number line, we graph the elements of this set by drawing an arrow from -2 to the right. We use a parenthesis at -2 to indicate that -2 is not an element of the given set.

The set of numbers greater than -2 is an example of an interval on the number line.

Graph sets of real numbers.

CLASSROOM Graphing an Inequality Written in Interval Notation EXAMPLE 9
ation and graph.

Write in interval notation and graph.

$$
\{x \mid x<5\}
$$

Solution:
The interval is the set of all real numbers less than 5 .
$(-\infty, 5)$

CLASSROOM	
EXAMPLE 10	Graphing an Inequality Written in Interval Notation

Write in interval notation and graph.
$\{x \mid x \geq 0\}$
Solution:

The interval is the set of all real numbers greater than or equal to 0 . We use a square bracket [since 0 is part of the set.

$$
[0, \infty)
$$

Graph sets of real numbers.

Sometimes we graph sets of numbers that are between two given numbers.

For example: $\{x \mid 2<x<8\}$
This is called a three-part inequality, is read " 2 is less than x and x is less than 8 " or " x is between 2 and 8 ."

CLASSROOM
 Graphing a Three-Part Inequality
 EXAMPLE 11
 Write in interval notation and graph.

$\{x \mid x-4 \leq x<2\}$

Solution:

Use a square bracket at -4

Use a parenthesis at 2.
[-4, 2)

[^0]: caumon Be careful when ordering negative numbers.

