(11.1) Additional Graphs of Functions

Objectives
1 Recognize the graphs of the elementary functions defined by $|x|, \frac{1}{x}$, and \sqrt{x}, and graph their translations.

2 Recognize and graph step functions.

Objective 1

Recognize the graphs of the elementary functions defined by $|x|, \frac{1}{-}$, and \sqrt{x}, and graph their transilations.

Recognize the graphs of the elementary functions defined by $|x|, \frac{1}{x}$, and \sqrt{x}, and graph their translation.
The elementary function defined by $f(x)=|x|$ is called the absolute value function.

Domain: $(-\infty, \infty)$
Range: $[0, \infty)$

Recognize the graphs of the elementary functions defined by $|x|, \frac{1}{x}$, and \sqrt{x}, and graph their translation.
The square root function, defined by $f(x)=\sqrt{x}$. We restrict the function values to be real numbers, x cannot take on negative values.

Domain: $[0, \infty)$
Range: $[0, \infty)$

Recognize the graphs of the elementary functions defined by $|x|, \frac{1}{x}$, and \sqrt{x}, and graph their translation.
The reciprocal function, defined by $f(x)=1 / x$, is a rational function. The axes are asymptotes for the function.

Domain and Range are both $(-\infty, 0) \cup(0, \infty)$.

$$
\text { Graph } f(x)=\sqrt{x+4} \text {. Give the domain and range. }
$$

Solution:

The graph is found by shifting the graph of the square root function, 4 units to the left.

The domain is $[-4, \infty)$.
The range is $[0, \infty)$.

Recognize and graph step functions.

$$
f(x)=\llbracket x \rrbracket
$$

The greatest integer function, written $f(x)=\llbracket x \rrbracket$, pairs every real number x with the greatest integer less than or equal to x.

CLASSROOM	Finding the Greatest Integer		
Evaluate each expression.			
Solution:			
$\llbracket 12 \rrbracket=12$	【-6.2]	$=-7$	
$\llbracket 3.7 \rrbracket=3$	【1 $\frac{1}{2} \rrbracket$	$=2$	
$\llbracket-9 \rrbracket=-9$	$\llbracket \pi \rrbracket$	$=3$	

CLASSROOM Applying a Greatest Integer Function

Assume that the post office charges 80 cents per oz (or fraction of an ounce) to mail a letter to Europe. Graph the ordered pairs (ounces, cost) in the interval (0,4].

Solution:

This function is similar to the greatest integer function, but in this case, we use the integer that is greater than or equal to the number.

Interval	Ounces Charged for	Cost
$(0,1]$	1	$\$ 0.80$
$(1,2]$	2	$\$ 1.60$
$(2,3]$	3	$\$ 2.40$
$(3,4]$	4	$\$ 3.20$

