(11.2) The Circle and the Ellipse

Objectives
1 Find an equation of a circle given the center and radius.
2 Determine the center and radius of a circle given its equation.
3 Recognize an equation of an ellipse.
4 Graph ellipses.

The Circle and the Ellipse

When an infinite cone is intersected by a plane, the resulting figure is called a conic section. The parabola is one example of a conic section; circles, ellipses, and hyperbolas may also result.

Find an equation of a circle given the center and radius.
A circle is the set of all points in a plane that lie a fixed distance from a fixed point.

The fixed point is called the center, and the fixed distance is called the radius.

CLASSROOM
EXAMPLE 1
Finding an Equation of a Circle and Graphing It
Find an equation of the circle with radius 4 and center at $(0,0)$, and graph it.

Solution:
If the point (x, y) is on the circle, the distance from (x, y) to the center $(0,0)$ is 4 . Use the distance formula.

$$
\begin{aligned}
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & =d \\
\sqrt{(x-0)^{2}+(y-0)^{2}} & =4 \\
\sqrt{x^{2}+y^{2}} & =4 \\
x^{2}+y^{2} & =16
\end{aligned}
$$

The equation of this circle is $x^{2}+y^{2}=16$.

Find an equation of a circle given the center and radius.

Equation of a Circle (Center-Radius Form)
An equation of a circle with radius r and center at (h, k) is
$\qquad(\boldsymbol{x}-\boldsymbol{h})^{2}+(\boldsymbol{y}-\boldsymbol{k})^{2}=\mathbf{r}^{2}$.

CLASSROOM	Using the Center-Radius Form of the Equation of a Circle
EXAMPLE 3	

Find an equation of the circle with center at $(2,-1)$ and radius $\sqrt{10}$.

Solution:

Substitute $h=2, k=-1$, and $r=3$

$$
\begin{gathered}
(x-h)^{2}+(y-k)^{2}=r^{2} \\
(x-2)^{2}+\left[(y-(-1)]^{2}=\sqrt{10}^{2}\right. \\
(x-2)^{2}+(y+1)^{2}=10
\end{gathered}
$$

CLASSROOM Completing the Square to Find the Center and Radius

 ind the center and radius of the circle $x^{2}+y^{2}+6 x-4 y-51=0$
Solution

Complete the squares on x and y.

$$
\begin{aligned}
\left(x^{2}+6 x\right)+\left(y^{2}-4 y\right) & =51 \\
\left(x^{2}+6 x+9\right)+\left(y^{2}-4 y+4\right) & =51+9+4 \\
(x+3)^{2}+(y-2)^{2} & =64 \\
{[x-(-3)]^{2}+(y-2)^{2} } & =8^{2}
\end{aligned}
$$

The circle has center at $(-3,2)$ and radius 8 .

Recognize an equation of an ellipse.

An ellipse is the set of all points in a plane the sum of whose distances from two fixed points is constant. These fixed points are called foci (singular: focus).

Equation of an Ellipse

The ellipse whose x-intercepts are $(a, 0)$ and $(-a, 0)$ and whose y-intercepts are $(0, b)$ and $(0,-b)$ has an equation of the form

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

Graphs of circles and ellipses are not graphs of functions. The only conic
section whose graph represents a function is the vertical parabola with equation $f(x)=a x^{2}+b x+c$
$\begin{gathered}\text { CLASSROOM } \\ \text { EXAMPLE } 5\end{gathered}$
Graph $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$

Solution:
$a^{2}=4$, so $a=2$ and the x-intercepts are $(2,0)$ and $(-2,0)$.
$b^{2}=25$, so $b=5$ and the y-intercepts
are $(0,5)$ and $(0,-5)$.
Plot the intercepts, and
draw the ellipse through them

CLASSROOM	
EXAMPLE 6	Graphing an Ellipse Shifted Horizontally and Vertically

Graph $\frac{(x+4)^{2}}{16}+\frac{(y-1)^{2}}{36}=1$.
Solution:
$\frac{[x-(-4)]^{2}}{4^{2}}+\frac{(y-1)^{2}}{6^{2}}=1$

The center is $(-4,1)$.

The ellipse passes through the four points:

$$
\begin{array}{ll}
(-4-4,1) & =(-8,1) \\
(-4+4,1) & =(0,1) \\
(-4,1+6) & =(-4,7) \\
(-4,1-6) & =(-4,-5)
\end{array}
$$

CLASSROOM
EXAMPLE 6
The center is $(-4,1)$

The ellipse passes through the four points.
$(-8,1)$
$(0,1)$
$(-4,7)$
$(-4,-5)$

