(11.4) Nonlinear Systems of Equations

Objectives
1 Solve a nonlinear system by substitution.
2 Solve a nonlinear system by elimination.
3 Solve a nonlinear system that requires a combination of methods.

Nonlinear Systems of Equations

An equation in which some terms have more than one variable or a variable of degree 2 or greater is called a nonlinear equation.

A nonlinear system of equations includes at least one nonlinear equation.

Nonlinear Systems of Equations

When solving a nonlinear system, it helps to visualize the types of graphs of the equations of the system to determine the possible number of points of intersection.

For example, if a system includes two equations where the graph of one is a circle and the graph of the other is a line, then there may be zero, one, or two points of intersection.

No points of intersection
One point of intersection

$$
\begin{aligned}
& \begin{array}{l|l}
\text { CLASSROOM } \\
\text { EXAMPLE } 1 & \text { Solving a Nonlinear System by Substitution }
\end{array} \\
& \text { Solve the system } x^{2}-2 y^{2}=8 \\
& x+y=6 \text {. } \\
& \text { Solve equation (2) for } y \text {. } \\
& y=6-x \\
& \text { Substitute } 6-x \text { for } y \text { in equation (1). } \\
& x^{2}-2 y^{2}=8 \\
& x^{2}-2(6-x)^{2}=8 \\
& x^{2}-2\left(x^{2}-12 x+36\right)=8 \\
& x^{2}-2 x^{2}+24 x-72=8 \quad x=4 \quad x=20 \\
& -x^{2}+24 x-80=0 \\
& x^{2}-24 x+80=0
\end{aligned}
$$

Solving a Nonlinear System by Substitution
EXAMPLE 2
Solve the system $x y+10=0$

$$
4 x+9 y=-2
$$

Solution:
Solve equation (1) for $y . \quad y=-\frac{10}{x}$
Substitute for y in equation (2)

$$
\begin{array}{rlrl}
4 x+9 y & =-2 & 4 x-90 & =-2 x \\
4 x+9\left(\frac{-10}{x}\right) & =-2 & 4 x^{2}+2 x-90 & =0 \\
2 x^{2}+x-45 & =0 \\
4 x-\frac{90}{x} & =-2 & (2 x-9)(x+5) & =0 \\
x=\frac{9}{2} & x & =-5
\end{array}
$$

CLASSROOM	Solving a Nonlinear System by Substitution (cont'd)	
Using the equation $y=-\frac{10}{x}$, find y.		$x y+10=0$
		$4 x+9 y=-2$
$x=9 / 2$	$x=-5$	
10	10	
- x	$y=-\frac{10}{x}$	
$y=10$	10	
$\frac{9}{2}$	$y=-\frac{}{(-5)}$	
$y=-\frac{20}{9}$	$y=2$	Check each ordered pair in the equations.
9		The solution set is
$\left(\frac{9}{2}, \frac{-20}{9}\right)$	$(-5,2)$	$\left\{\left(\frac{9}{2}, \frac{-20}{9}\right),(-5,2)\right\} .$

$$
\begin{aligned}
& \begin{array}{c|c}
\begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 3
\end{array} & \text { Solving a Nonlinear System by Elimination } \\
\text { Solve the system } x^{2}-5 y^{2}=4 \\
& x^{2}-3 y^{2}=6
\end{array} \\
& \text { Solution: }
\end{aligned}
$$

Multiply equation (1) by -1 and add the result to equation (2).

$$
\begin{aligned}
& x^{2}-5 y^{2}=4 \longrightarrow-x^{2}+5 y^{2}=-4 \\
& x^{2}-3 y^{2}=6 \quad \begin{array}{c}
x^{2}-3 y^{2}
\end{array}=6 \\
& 2 y^{2}=2 \\
& y^{2}=1 \\
& y=1 \quad y=-1
\end{aligned}
$$

$$
\begin{array}{c|c|}
\begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 3
\end{array} & \text { Solving a Nonlinear System by Elimination (cont'd) } \\
\hline \text { Substitute } 1 \text { for } y^{2} \text { in equation (1). } & x^{2}-5 y^{2}=4 \\
x^{2}-5 y^{2}=4 & x^{2}-3 y^{2}=6 . \\
x^{2}-5(1)=4 \\
x^{2}=9 \\
x=3 \quad x=-3
\end{array}
$$

Check: If $x= \pm 3, x^{2}=9$, and if $y= \pm 1, y^{2}=1$.
Thus in any case, we get $9-5=4$ in (1) and $9-3=6$ in (2). All four ordered pairs check.

The solution set is $\{(3,1),(-3,1),(-3,-1),(3,-1)\}$.

Objective 3

Solve a nonlinear system that requires a combination of methods.

CLASSROOM
 EXAMPLE 4

Solving a Nonlinear System by a Combination of Methods
Solve the system $x^{2}+7 x y-2 y^{2}=-8$

$$
-2 x^{2}+4 y^{2}=16
$$

Solution:
Multiply equation (1) by 2 and add the result to equation (2).

$$
\begin{aligned}
& x^{2}+7 x y-2 y^{2}=-8 \longrightarrow 2 x^{2}+14 x y-4 y^{2}=-16 \\
&-2 x^{2}+4 y^{2}=16 \\
&-2 x^{2}+4 y^{2}=16 \\
& 14 x y=0 \\
& x y=0
\end{aligned}
$$

If $x y=0$, then either $x=0$ or $y=0$.

$$
\begin{aligned}
& \begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 4
\end{array} \\
& \begin{array}{c}
\text { If } x=0 \text {, then substitute a Nonlinear System by a Combination of Methods (cont'd) } \\
0 \text { for } x \text { in equation (1). }
\end{array} \\
& \qquad \begin{aligned}
x^{2}+7 x y-2 y^{2} & =-7 x y-2 y^{2}=-8 \\
0+0-2 y^{2} & =-8 \\
y^{2} & =4 \\
y & = \pm 2
\end{aligned} \\
& \qquad \begin{aligned}
\text { If } y=0 x^{2}+4 y^{2}=16
\end{aligned} \\
& \begin{aligned}
x^{2}+7 x y-2 y^{2} & =-8 \\
x^{2}+0-0 & =-8 \\
x^{2} & =-8 \\
x & = \pm 2 i \sqrt{2} \quad \text { The solution set is }\{(0,2),(0,-2),
\end{aligned} \\
& \qquad \begin{array}{l}
(2 i \sqrt{2}, 0),(-2 i \sqrt{2}, 0)\} .
\end{array}
\end{aligned}
$$

