(11.5) Second-Degree Inequalities and Systems of Inequalities

Objectives
1 Graph second-degree inequalities.
2 Graph the solution set of a system of inequalities.

Graph second-degree inequalities.

A second-degree inequality is an inequality with at least one variable of degree 2 and no variable with degree greater than 2 .

$$
\begin{aligned}
& \begin{array}{l}
\text { CLASSROOM } \\
\text { EXAMPLE } 2
\end{array} \\
& \text { Graphing a Second-Degree Inequality } \\
& \text { Graph } y \geq(x+1)^{2}-5 \text {. } \\
& \text { Solution: } \\
& \text { The boundary is a parabola that opens upward with vertex at }(-1,-5) \text {. } \\
& \text { It is a solid curve. } \\
& \text { Use }(0,0) \text { as a test point. } \\
& y \geq(x+1)^{2}-5 \\
& 0 \geq(0+1)^{2}-5 \\
& 0 \geq 1-5 \\
& 0 \geq-4 \\
& \text { True, shade the region that contains }(0,0) \text {. }
\end{aligned}
$$

```
CLASSROOM Graphing a Second-Degree Inequality
Graph \mp@subsup{x}{}{2}+4\mp@subsup{y}{}{2}>36
```

Solution:
The boundary is an ellipse.
The line is dashed.
Intercepts $(6,0),(-6,0)$,
$(0,3)$, and $(0,-3)$
Use $(0,0)$ as a test point.

$$
\begin{aligned}
\frac{x^{2}}{36}+\frac{y^{2}}{9} & >1 \\
x^{2}+4 y^{2} & >36 \\
0+0 & >36
\end{aligned}
$$

False, shade the region that does not contain $(0,0)$.

Graph the solution set of a system of inequalities.

If two or more inequalities are considered at the same time, we have a system of inequalities. To find the solution set of the system, we find the intersection of the graphs (solution sets) of the inequalities in the system.

\section*{| CLASSROOM | Graphing a System of Two Inequalities |
| :---: | :---: |}

Graph the solution set of the system $y \geq x^{2}-3$

Solution:

$$
y \leq-x^{2}+3 .
$$

For the first equation, the boundary is an upward opening parabola with vertical axis $x=0$ and vertex $(0,-3)$.

It is a solid curve.

Use $(0,0)$ as a test point.

$$
\begin{aligned}
& y \geq x^{2}-3 \\
& 0 \geq 0^{2}-3 \\
& 0 \geq-3
\end{aligned}
$$

True, shade the region that contains $(0,0)$.
Slide 11.5-7

\section*{| CLASSROOM | |
| :--- | :--- |
| EXAMPLE 4 | Graphing a System of Two Inequalities (cont'd) |}

Graph the solution set of the system $y \geq x^{2}-3$

$$
y \leq-x^{2}+3
$$

For the second equation, the boundary is a downward opening parabola with vertical axis $x=0$ and vertex
$(0,3)$.

It is a solid curve.

Use (0,0) as a test point.

$$
\begin{gathered}
y \leq-x^{2}+3 \\
0 \leq-0^{2}+3 \\
0 \leq 3
\end{gathered}
$$

True, shade the region that contains $(0,0)$.

