(1.2) Operations on Real Numbers

Objectives
1 Add real numbers.
2 Subtract real numbers.

3 Find the distance between two points on a number line.
4 Multiply real numbers.

5 Find reciprocals and divide real numbers.

Add real numbers.

Recall that the answer to an addition problem is called the sum.

Adding Real Numbers

Same Sign To add two numbers with the same sign, add their absolute values. The sum has the same sign as the given numbers.

Different Signs To add two numbers with different signs, find the absolute values of the numbers, and subtract the smaller absolute value from the larger. The sum has the same sign as the number with the larger absolute value.

CLASSROOM
EXAMPLE 1
Find each sum.

$$
-6+(-15)
$$

Solution:

Find the absolute values.

$$
|-6|=6|-15|=15
$$

Because they have the same sign, add their absolute values.

Subtract real numbers.

Recall that the answer to a subtraction problem is called the difference.

Subtraction

For all real numbers a and b,
$a-b=a+(-b)$.
That is, to subtract b from a, add the additive inverse (or opposite) of b to a.

CLASSROOM	
EXAMPLE 3	Subtracting Real Numbers

Find each difference

Slide 1.2-8

CLASSROOM

$$
\begin{aligned}
\frac{3}{4}-\left(-\frac{2}{3}\right) & =\frac{3}{4}+\frac{2}{3}
\end{aligned} \begin{aligned}
& \text { To subtract, add the additive } \\
& \text { inverse (opposite). }
\end{aligned}
$$

CLASSROOM
 EXAMPLE 4
 Adding and Subtracting Real Numbers

Perform the indicated operations
$-6-(-2)-8-1$
Work from left to right.

Solution:

$=(-6+2)-8-1$
$=-4-8-1$
$=-12-1$
$=-13$
$-3-[(-7)+15]-6 \quad$ Work inside brackets.
$=-3-[8]-6$
$=-11-6$
$=-17$

Find the distance between two points on a number line.
To find the distance between the points 2 and 8, we subtract
$8-2=6$. Since distance is always positive, we must be careful to subtract in such a way that the answer is positive.

Or, to avoid this problem altogether, we can find the absolute value of the difference. Then the distance is either $|8-2|=6$ or
$|2-8|=6$.

Multiply real numbers.

Recall that the answer to a multiplication problem is called the product.

Multiplying Real Numbers

Same Sign The product of two numbers with the same sign is positive.

Different Signs The product of two numbers with different signs is negative.

Find reciprocals and divide real numbers.

The definition of division depends on the idea of a multiplicative inverse, or reciprocal.

Reciprocal
The reciprocal of a nonzero number a is $\frac{1}{a}$.

A number and its additive inverse have opposite signs. However, a number and its reciprocal always have the same sign.

Find reciprocals and divide real numbers.

Reciprocals have a product of 1

Number	Reciprocal
$-\frac{2}{5}$	$-\frac{5}{2}$
-6	$-\frac{1}{6}$
$\frac{7}{11}$	$\frac{11}{7}$
0.05	20
0	None

Division by 0 is undefined, whereas dividing 0 by a nonzero number gives the quotient 0 .

Find reciprocals and divide real numbers.

The result of dividing one number by another is called the quotient.

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { Division } \\
\text { For all real numbers } a \text { and } b(\text { where } b \neq 0), \\
\boldsymbol{a} \div \boldsymbol{b}=\frac{a}{b}=\boldsymbol{a} \cdot \frac{1}{b}
\end{array} .
\end{aligned}
$$

That is, multiply the first number (the dividend) by the reciprocal of the second number (the divisor)

Dividing Real Numbers

Same Sign The quotient of two nonzero real numbers with the same sign is positive.

Different Signs The product of two nonzero real numbers with different signs is negative

$$
\begin{aligned}
& \begin{array}{c}
\begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 7
\end{array}
\end{array} \text { Dividing Real Numbers } \\
& \text { Find each quotient. } \\
& \begin{array}{ll}
\frac{-15}{-3} & =-15 \cdot \frac{1}{-3} \\
\text { Solution: }
\end{array} \\
& \begin{aligned}
-\frac{3}{8} & =5
\end{aligned} \begin{array}{l}
\text { Same signs; quotient is } \\
\text { positive. }
\end{array} \\
& \begin{aligned}
\frac{3}{16} & =-\frac{3}{8} \cdot\left(\frac{16}{11}\right) \\
\frac{3}{4} \div\left(-\frac{7}{16}\right)=-\frac{6}{11} & \begin{array}{l}
\text { The reciprocal of } 11 / 16 \text { is } \\
16 / 11 .
\end{array} \\
=\frac{3}{4} \cdot-\frac{16}{7} & =-\frac{48}{28} \quad \begin{array}{l}
\text { Multiply by the reciprocal. }
\end{array} \\
& =-\frac{4 \cdot 2 \cdot 6}{4 \cdot 7} \quad=-\frac{12}{7}
\end{aligned}
\end{aligned}
$$

