

Adding Two Negative Real Numbers

Because they have the same sign, add their absolute values.

Both numbers are negative, so the answer will be negative.

-6 + (-15) = -(6 + 15) Add the absolute values.

CLASSROOM

Find each sum.

Find the absolute values. |-6| = 6|-15| = 15

= -(21)

-6 + (-15)

Solution:

Add real numbers.

with the larger absolute value.

Recall that the answer to an addition problem is called the sum.

Adding Real Numbers

Same Sign To add two numbers with the same sign, add their

absolute values. The sum has the same sign as the given numbers.

Different Signs To add two numbers with **different** signs, find the absolute values of the numbers, and subtract the smaller absolute

value from the larger. The sum has the same sign as the number

Subtract real numbers.

Recall that the answer to a subtraction problem is called the difference.

Subtraction

For all real numbers a and b,

$$a - b = a + (-b)$$
.

That is, to subtract b from a, add the additive inverse (or opposite) of

Find each difference.

Solution:

Change to addition.

The additive inverse of
$$-5$$
 is 5 .

$$= 17$$

Change to addition.

The additive inverse of -5 is 5 .

$$= 17$$

Change to addition.

The additive inverse of -6.3 is 6.3 .

$$= -5.2$$

Subtracting Real Numbers (cont'd) To subtract, add the additive inverse (opposite). $= \frac{3 \cdot 3}{4 \cdot 3} + \frac{2 \cdot 4}{3 \cdot 4} \qquad \text{Write each fraction with the least common denominator, 12.}$

$$= \frac{9}{12} + \frac{8}{12}$$
 Add numerators; keep the same denominator.

CLASSROOM

CLASSROOM Adding and Subtracting Real Numbers EXAMPLE 4 Perform the indicated operations.

-6 - (-2) - 8 - 1

Work from left to right.

Solution:

$$= (-6 + 2) - 8 - 1$$

= $-4 - 8 - 1$

$$-3 - [(-7) + 15] - 6$$

Work inside brackets.

$$= -3 - [8] - 6$$

Find the distance between two points on a number line.

To find the distance between the points 2 and 8, we subtract 8-2=6. Since distance is always positive, we must be careful to subtract in such a way that the answer is positive.

Or, to avoid this problem altogether, we can find the absolute value of the difference. Then the distance is either |8 - 2| = 6 or |2 - 8| = 6.

CLASSROOM EXAMPLE 5 Finding Distance Between Points on the Number Line

Find the distance between the points -12 and -1.

Solution:

Find the absolute value of the difference of the numbers, taken in either order.

Multiply real numbers.

Recall that the answer to a multiplication problem is called the product.

Multiplying Real Numbers

Same Sign The product of two numbers with the same sign is

Different Signs The product of two numbers with different signs is negative.

CLASSROOI EXAMPLE 6		ng Real Numbers	
Find each product.			
7(-2)	Solution: $=-14$	Different signs; product is negative.	
-0.9(-15)	= 13.5	Same signs; product is positive.	
$-\frac{5}{8}(16)$	= -10	Different signs; product is negative.	

Find reciprocals and divide real numbers.

The definition of division depends on the idea of a multiplicative inverse, or reciprocal.

Reciprocal

The reciprocal of a nonzero number a is $\frac{1}{a}$

A number and its additive inverse have opposite signs. However, a number and its reciprocal always have the same sign.

Find reciprocals and divide real numbers.

Reciprocals have a product of 1.

Number	Reciprocal
2	_5
5	2
-6	$-\frac{1}{6}$
7	11
11	7
0.05	20
0	None

Division by 0 is undefined, whereas dividing 0 by a nonzero number

Find reciprocals and divide real numbers.

The result of dividing one number by another is called the quotient.

Division

For all real numbers a and b (where $b \neq 0$),

$$a \div b = \frac{a}{b} = a \cdot \frac{1}{b}$$

That is, multiply the first number (the dividend) by the reciprocal of the second number (the divisor).

Dividing Real Numbers

 $\textbf{\textit{Same Sign}} \quad \text{The quotient of two nonzero real numbers with the} \\$ same sign is positive.

Different Signs The product of two nonzero real numbers with different signs is negative.

CLASSROOM EXAMPLE 7 **Dividing Real Numbers** Find each quotient. Solution: = $-15 \cdot \frac{1}{-3}$ = 5 Same signs; quotient is positive. $\frac{-\frac{3}{8}}{\frac{11}{16}} = -\frac{3}{8} \cdot \left(\frac{16}{11}\right) = -\frac{6}{11}$ The reciprocal of 11/16 is $\frac{3}{4} \div \left(-\frac{7}{16}\right) \quad = \frac{3}{4} \cdot -\frac{16}{7} \qquad = -\frac{48}{28} \qquad \text{Multiply by the reciprocal.}$ $=-\frac{4\cdot 2\cdot 6}{4\cdot 7} = -\frac{12}{7}$