(12.2) Arithmetic Sequences

Objectives
1 Find the common difference of an arithmetic sequence.
2 Find the general term of an arithmetic sequence.
3 Use an arithmetic sequence in an application.
4 Find any specified term or the number of terms of an arithmetic sequence.

5 Find the sum of a specified number of terms of an arithmetic sequence.

Find the common difference of an arithmetic sequence.

Arithmetic Sequence

An arithmetic sequence, or arithmetic progression, is a sequence in which each term after the first is found by adding a constant number to the preceding term.

CLASSROOM	Finding the Common Difference
EXAMPLE 1	

Find d for the arithmetic sequence
$1, \frac{4}{3}, \frac{5}{3}, 2, \frac{7}{3}, \frac{8}{3}, 3, \ldots$
Solution:

You should find the difference for all pairs of adjacent terms to determine if the sequence is arithmetic. In this case, we are given that the sequence is arithmetic, so d is the difference between any two adjacent terms. Choose the terms $\frac{5}{3}$ and $\frac{4}{3}$.

$$
d=\frac{5}{3}-\frac{4}{3}=\frac{1}{3}
$$

Find the general term of an arithmetic sequence.

General Term of an Arithmetic Sequence

The general term of an arithmetic sequence with first term a_{1} and common difference d is

$$
a_{n}=a_{1}+(n-1) d .
$$

$\begin{aligned} & \text { CLASSROOM } \\ & \text { EXAMPLE } 2\end{aligned}$ Writing the Terms of a Sequence from the First Term and the Common Difference
Write the first five terms of the arithmetic sequence with first term 5 and common difference $1 / 2$.

Solution:

Given $a_{1}=5$ and $d=1 / 2$,

$$
\begin{aligned}
& a_{2}=a_{1}+d=5+1 / 2=51 / 2 \\
& a_{3}=a_{2}+d=51 / 2+1 / 2=6 \\
& a_{4}=a_{3}+d=6+1 / 2=61 / 2 \\
& a_{5}=a_{4}+d=61 / 2+1 / 2=7
\end{aligned}
$$

The first five terms of the sequence are $5,5 \frac{112}{2}, 6,61 / 2,7$.

Find the general term of the arithmetic sequence $4,2,0,-2, \ldots$
Solution:
To find d, subtract any two adjacent terms.

$$
d=-2-0=-2
$$

The first term is $a_{1}=4$.
Now find $a_{n} . \quad a_{n}=a_{1}+(n-1) d$

$$
=4+(n-1)(-2)
$$

$$
=4-2 n+2
$$

$$
=-2 n+6
$$

Thus $a_{20}=-2(20)+6=-40+6=-34$.

CLASSROOM Applying an Arithmetic Sequence

How much will be in an account if an initial deposit of $\$ 5000$ is followed by a $\$ 250$ contribution each month for 36 months? Solution:

After 1 month, the account will have $\$ 5000+1 \cdot \$ 250=\$ 5250$.

After 2 months, the account will have $\$ 5000+2 \cdot \$ 250=\$ 5500$.

In general, after n months the account will have $\$ 5000+n \cdot \$ 250$

Thus, after 36 months, the account will have $\$ 5000+36 \cdot \$ 250=\$ 14,000$.

Objective 4

Find any specified term or the number of terms of an arithmetic sequence.

CLASSROOM

 Finding Specified Terms in SequenceFind the indicated term for the arithmetic sequence.
Given $a_{1}=-15$ and $d=-4$, find a_{12}
Solution:

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d \\
a_{12} & =a_{1}+(12-1) d \\
& =-15+11(-4) \\
& =-59
\end{aligned}
$$

Given $a_{3}=2$ and $a_{10}=23$, find a_{15}

Solution

Use $a_{n}=a_{1}+(n-1) d$ to write a system of equations.

$$
\begin{aligned}
a_{3} & =a_{1}+(3-1) d \\
2 & =a_{1}+2 d \\
a_{10} & =a_{1}+(10-1) d \\
23 & =a_{1}+9 d
\end{aligned}
$$

To eliminate a_{1}, multiply (1) by -1 and add the result to (2)

$$
\begin{aligned}
-2 & =-a_{1}-2 d \\
23 & =a_{1}+9 d \\
\hline 21 & = \\
3 & =d
\end{aligned}
$$

CLASSROOM

Solution:

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d & & \text { Formula for } \boldsymbol{a}_{n} \\
-46 & =8+(n-1)(-3) & & \boldsymbol{d}=\mathbf{5}-\mathbf{8}=\mathbf{- 3} \\
-46 & =8-3 n+3 & & \text { Distributive pr } \\
-57 & =-3 n & & \text { Simplify } \\
19 & =n & & \text { Divide by }-\mathbf{3} .
\end{aligned}
$$

The sequence has 19 terms

Objective 5

Find the sum of a specified number of terms of an arithmetic sequence.

Find the sum of the first nine terms of the arithmetic sequence in which $a_{n}=5+2 n$. Solution:

Since we want the sum of the first nine terms, we'll find a_{1} and a_{9} using $a_{n}=5+2 n$.

$$
\begin{aligned}
& a_{1}=5+2(1)=7 \\
& a_{9}=5+2(9)=23
\end{aligned}
$$

CLASSROOM Finding the Sum of the First n Terms of an Arithmetic Sequence (cont'd) EXAMPLE 7

Now use the formula for the sum of the first n terms of an arithmetic sequence.

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right) \\
S_{n} & =\frac{9}{2}\left(a_{1}+a_{9}\right) \\
& =\frac{9}{2}(7+23) \\
& =\frac{9}{2}(30) \\
& =135
\end{aligned}
$$

Find the sum of specified number of terms of an

 arithmetic sequence.Sum of the First \boldsymbol{n} Terms of an Arithmetic Sequence
The sum of the first n terms of the arithmetic sequence with the first term a_{1}, nth term a_{n}, and common difference d is given by either formula

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \quad \text { or } \quad S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]
$$

CLASSROOM
EXAMPLE 8
Finding the Sum of the First n Terms of an Arithmetic Sequence
Find the sum of the first 10 terms of the arithmetic sequence having first term -7 and common difference 3 .

Solution:

We are given $a_{1}=-7, d=3$, and $n=10$. Use the second formula for the sum of the arithmetic sequence

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
S_{10} & =\frac{10}{2}[2(-7)+(10-1) 3] \\
& =5[-14+(9) 3] \\
& =5(-14+27) \\
& =65
\end{aligned}
$$

