

Geometric Sequences

Geometric Sequence

A geometric sequence, or geometric progression, is a sequence in which each term after the first is found by multiplying the preceding term by a nonzero constant.

Find the common ratio of a geometric sequence.

We find the constant multiplier, called the common ratio, by dividing any term after the first by the preceding term. That is, the common ratio is

$$
r=\frac{a_{n+1}}{a_{n}}
$$

\section*{| CLASSROOM | |
| :--- | :--- |
| EXAMPLE 1 | Finding the Common Ratio |
 Determine r for the geometric sequence $1,-2,4,-8,16, \ldots$
 Solution:}

You should find the ratio for all pairs of adjacent terms to determine if the sequence is geometric. In this case, we are given that the sequence is geometric, so to find r, choose any two adjacent terms and divide the second one by the first one. Choose the terms 1 and -2 .

$$
r=\frac{-2}{1}=-2
$$

Notice that any other two adjacent terms could have been used with the same result.

The common ration is $r=-2$.

Find the general term of a geometric sequence.

General Term of a Geometric Sequence

The general term of the geometric sequence with first term a_{1} and common ratio r is

$$
a_{n}=a_{1} r^{n-1} .
$$

In finding $a_{1} r^{n-1}$, be careful to use the correct order of operations. The value of r^{m-1} must be found first. Then multiply the result by a_{1}.

CLASSROOM	
EXAMPLE 3	Finding Specified Terms in Sequences

Find the indicated term for each geometric sequence.

Solution:

$$
\begin{array}{rlrl}
a_{1} & =-2, r=5 ; a_{6} & & 4,28,196,1372, \ldots ; a_{8} \\
a_{n} & =a_{1} r^{n-1} & & \text { The common ratio is } r=\frac{28}{4}=7 . \\
a_{6} & =-2(5)^{6-1} & & \text { Substitute into the formula for } a_{n} . \\
& =-2(5)^{5} & & a_{n}=a_{1} r^{n-1} \\
& =-6250 & & a_{8}=4(7)^{8-1} \\
& =3,294,172
\end{array}
$$

CLASSROON
EXAMPLE 4 Writing the Terms of a Sequence
Write the first five terms of the geometric sequence whose first term is 3 and whose common ratio is -2 .
Solution:

$$
a_{1}=3
$$

$$
a_{2}=a_{1} r=3(-2)=-6
$$

$$
a_{3}=a_{2} r=-6(-2)=12
$$

$$
a_{4}=a_{3} r=12(-2)=-24
$$

$$
a_{5}=a_{4} r=-24(-2)=48
$$

Objective 4

Find the sum of a specified number of terms of a geometric sequence.

Find the sum of a specified number of terms of a geometric sequence.

Sum of the First \boldsymbol{n} Terms of a Geometric Sequence
The sum of the first n terms of the geometric sequence with the first term a_{1} and common ratio r is

$$
S_{n}=\frac{a_{1}\left(r^{n}-1\right)}{r-1} \quad(r \neq 1) .
$$

CLASSROOM
Finding the Sum of the First \boldsymbol{n} Terms of a Geometric Sequence
Evaluate the sum of the first six terms of the geometric sequence with first term 6 and common ratio 3

Solution:

$$
\begin{aligned}
S_{n} & =\frac{a_{1}\left(r^{n}-1\right)}{r-1} \\
S_{6} & =\frac{6\left(3^{6}-1\right)}{3-1} \\
& =\frac{6(729-1)}{2} \\
& =3(728) \\
& =2184
\end{aligned}
$$

CLASSROOM EXAMPLE 6
Evaluate $\sum_{i=1}^{6} 3\left(\frac{1}{4}\right)^{t}$
Solution:

$$
\text { For } \sum_{i=1}^{6} 3\left(\frac{1}{4}\right)^{i}, a_{1}=\frac{3}{4} \text { and } r=\frac{1}{4} \text {. Find } S_{6} \text {. }
$$

$$
S_{n}=\frac{a_{1}\left(r^{n}-1\right)}{r-1} \quad=-1\left(\frac{1}{4096}-\frac{4096}{4096}\right)
$$

$$
S_{6}=\frac{\frac{3}{4}\left[\left(\frac{1}{4}\right)^{6}-1\right]}{\frac{1}{4}-1}=-1\left(\frac{-4095}{4096}\right)
$$

$$
=\frac{\frac{3}{4}\left[\frac{1}{4096}-1\right]}{-\frac{3}{4}} \quad=\frac{4095}{4096} \quad \text { or } \quad \approx 0.9998
$$

Apply the formula for the future value of an ordinary annuity.

Future Value of an Ordinary Annuity

The future value for an ordinary annuity is

$$
S=R\left[\frac{(1+i)^{n}-1}{i}\right]
$$

where S is the future value,
R is the payment at the end of each period,
i is the interest rate per period, and
n is the number of periods.

CLASSROOM EXAMPLE 7

Applying the Formula for the Future Value of an Annuity
Sonny's Building Specialties deposits $\$ 2500$ at the end of each year into an account paying 4% per yr, compounded annually. Find the total amount on deposit after 10 yr

Solution:

$$
\begin{aligned}
S & =R\left[\frac{(1+i)^{n}-1}{i}\right] \\
S & =2500\left[\frac{(1+0.04)^{10}-1}{0.04}\right] \\
& =30,015.268
\end{aligned}
$$

The future value of the annuity is $\$ 30,015.27$.

Find the sum of an infinite number of terms of certain geometric sequences.

Sum of the Terms of an Infinite Geometric Sequence
The sum S of the terms of an infinite geometric sequence with the first term a_{1} and common ratio $r,|r|<1$, is

$$
\boldsymbol{S}=\frac{a_{1}}{1-\boldsymbol{r}} .
$$

If $|r| \geq 1$, then the sum does not exist.

$$
S=\$ 2000\left[\frac{(1+0.005)^{120}-1}{0.005}\right]
$$

$$
=\$ 327,758.69
$$

CLASSROOM EXAMPLE 8

 Finding the Sum of the Terms of an Infinite Geometric SequenceFind the sum of the terms of the infinite geometric sequence with
$a_{1}=-2$ and $r=-\frac{5}{8}$

Solution:

Use the formula for the sum of the terms of an infinite geometric sequence with $a_{1}=-2$ and $r=-\frac{5}{8}$.

$$
S=\frac{a_{1}}{1-r}=\frac{-2}{1-\left(-\frac{5}{8}\right)}=\frac{-2}{\frac{13}{8}} \quad=-\frac{16}{13}
$$

CLASSROOM Finding the Sum of the Terms of an Infinite Geometric Series EXAMPLE 9

$$
\text { Find } \sum_{i=1}^{\infty}\left(\frac{1}{5}\right)\left(\frac{5}{7}\right)^{i}
$$

Solution:
For $\sum_{i=1}^{\infty}\left(\frac{1}{5}\right)\left(\frac{5}{7}\right)^{i}, a_{1}=\frac{1}{7}$ and $r=\frac{5}{7}$.

$$
S=\frac{a_{1}}{1-r}=\frac{\frac{1}{7}}{1-\frac{5}{7}}=\frac{\frac{1}{7}}{\frac{2}{7}}=\frac{1}{2}
$$

