(12.4) The Binomial Theorem

Objectives

1 Expand a binomial raised to a power.
2 Find any specified term of the expansion of a binomial.

Expand a binomial raised to a power.

```
Pascal's Triangle
1
    \(\begin{array}{lllll}1 & & 2 & & 1 \\ & 3 & & 3 & 1\end{array}\)
\(\begin{array}{lllll}1 & 4 & 6 & 4 & 1\end{array}\)
    and so on
```


Expand a binomial raised to a power.

\boldsymbol{n} factorial (\boldsymbol{n} !
For any positive integer n,

$$
n!=n(n-1)(n-2)(n-3) \cdots(2)(1) .
$$

By definition, 0!=1

CLASSROOM EXAMPLE 1	Evaluating Factorials
Evaluate 4!.	
Solution:	
$=4 \cdot 3 \cdot 2 \cdot 1$	
$=24$	

Expand a binomial raised to a power.

CLASSROOM	
EXAMPLE 2	Evaluating Expressions Involving Factorials

Find the value of each expression.
Solution:

$$
\begin{aligned}
& \frac{7!}{6!1!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)(1)}=\frac{7}{1}=7 \\
& \frac{7!}{3!4!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(3 \cdot 2 \cdot 1)(4 \cdot 3 \cdot 2 \cdot 1)}=\frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1}=\frac{7 \cdot 5}{1}=35 \\
& \frac{7!}{2!5!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)}=\frac{7 \cdot 6}{2 \cdot 1}=\frac{7 \cdot 3}{1}=21
\end{aligned}
$$

$$
\frac{7!}{7!0!}=\frac{1}{0!} \quad=\frac{1}{1} \quad=1
$$

Expand a binomial raised to a power.

$$
\begin{aligned}
& \text { Binomial Theorem } \\
& \text { For any positive integer } n \text {, } \\
& (x+y)^{n}= \\
& =x^{n}+\frac{n!}{(n-1)!1!} x^{n-1} y+\frac{n!}{(n-2)!2!} x^{n-2} y^{2} \\
& \\
& +\frac{n!}{3!(n-3)!} x^{n-3} y^{3}+\cdots+\frac{n!}{(n-1)!1!} x y^{n-1}+y^{n}
\end{aligned}
$$

The binomial theorem can be written in summation notation as

$$
(x+y)^{n}=\sum_{i=0}^{n} \frac{n!}{(n-i)!i!} x^{n-i} y^{i}
$$

$$
\begin{aligned}
& \begin{array}{l|l}
\text { CLASSROOM } & \text { Using the Binomial Theorem } \\
\text { EXAMPLE } 4 &
\end{array} \\
& \text { EXAMPLE } 4 \\
& \text { Expand }\left(x^{2}+3\right)^{5} \text {. } \\
& \text { Solution: } \\
& =\left(x^{2}\right)^{5}+\frac{5!}{4!1!}\left(x^{2}\right)^{4}(3)^{1}+\frac{5!}{3!2!}\left(x^{2}\right)^{3}(3)^{2}+\frac{5!}{2!3!}\left(x^{2}\right)^{2}(3)^{3} \\
& +\frac{5!}{1!4!}\left(x^{2}\right)^{1}(3)^{4}+3^{5} \\
& =x^{10}+5 x^{8}(3)^{1}+10 x^{6}(9)+10 x^{4}(27)+5 x^{2}(81)+243 \\
& =x^{10}+15 x^{8}+90 x^{6}+270 x^{4}+405 x^{2}+243
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 5
\end{array} \\
& \text { Using the Binomial Theorem } \\
& \text { Expand }\left(\frac{x}{4}-3 y\right)^{4} \\
& \text { Solution: } \\
& \begin{array}{c}
=\left(\frac{x}{4}\right)^{4}+\frac{4!}{3!1!}\left(\frac{x}{4}\right)^{3}(-3 y)^{1}+\frac{4!}{2!2!}\left(\frac{x}{4}\right)^{2}(-3 y)^{2} \\
\quad+\frac{4!}{1!3!}\left(\frac{x}{4}\right)^{1}(-3 y)^{3}+(-3 y)^{4} \\
=\frac{x^{4}}{4^{4}}+4 \cdot \frac{x^{3}}{4^{3}}(-3 y)+6 \cdot \frac{x^{2}}{4^{2}}\left(9 y^{2}\right)+4 \cdot \frac{x}{4}\left(-27 y^{3}\right)+81 y^{4} \\
=\frac{1}{256} x^{4}-\frac{3}{16} x^{3} y+\frac{27}{8} x^{2} y^{2}-27 x y^{3}+81 y^{4}
\end{array}
\end{aligned}
$$

Find any specified term of the expansion of a binomial.

rth Term of the Binomial Expansion

If $n \geq r-1$, then the r th term of the expansion of $(x+y)^{n}$ is

$$
\frac{n!}{(r-1)![n-(r-1)]!} x^{n-(r-1)} y^{r-1}
$$

CLASSROOM EXAMPLE 6 Finding a Single Term of a Binomial Expansion
Find the fifth term of $\left(\frac{x}{2}-y\right)^{9}$.
Solution:
Solution:
In the fifth term of $\left(\frac{x}{2}-y\right)^{9}$, the exponent on $(-y)$ is $5-1=4$ and the exponent on $\left(\frac{x}{2}\right)$ is $9-4=5$.

$$
\text { The fifth term is } \quad \begin{aligned}
=\frac{9!}{5!4!}\left(\frac{x}{2}\right)^{5}(-y)^{4}= & \frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{x^{5}}{2^{5}} \cdot y^{4} \\
& =126 \cdot \frac{1}{32} x^{5} y^{4} \\
& =\frac{63}{16} x^{5} y^{4}
\end{aligned}
$$

