(12.1) Sequences and Series

Objectives
1 Find the terms of a sequence, given the general term.
2 Find the general term of a sequence.
3 Use sequences to solve applied problems.
4 Use summation notation to evaluate a series.
5 Write a series with summation notation.
6 Find the arithmetic mean (average) of a group of numbers.

Objective 1

Find the terms of a sequence, given the general term.
$a_{n}=2 n+1$
To get a_{4}, the fourth term, replace n with 4 .
$a_{4}=2(4)+1=9$

Objective 2

Find the general term of a sequence.

Sequences and Series

A sequence is a function whose domain is the set of a natural numbers.

Infinite Sequence

An infinite sequence is a function with the set of all positive integers as the domain. A finite sequence is a function with domain of the form $\{1,2,3, \ldots, n\}$.

CLASSROOM
EXAMPLE 2

Find an expression for the general term a_{n} of the sequence
$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$
Solution:
$\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots \quad$ Can be written as
$\frac{1}{2^{1}}, \frac{1}{2^{2}}, \frac{1}{2^{3}}, \frac{1}{2^{4}}, \ldots$, so $a_{n}=\frac{1}{2^{n}}$, or $a_{n}=\left(\frac{1}{2}\right)^{n}$.

Objective 3

Use sequences to solve applied problems.

Saad Alarachi borrows $\$ 10,000$ and agrees to pay a monthly payment of $\$ 1000$ plus 2% of the unpaid balance.

Solution:

Month	Interest	Payment	Unpaid balance
0			10,000
1	$10,000(0.02)=200$	$1000+200=1200$	$10,000-1000=9000$
2	$9000(0.02)=180$	$1000+180=1180$	$9000-1000=8000$
3	$8000(0.02)=160$	$1000+160=1160$	$8000-1000=7000$
4	$7000(0.02)=140$	$1000+140=1140$	$7000-1000=6000$

The payments are $\$ 1200, \$ 1180, \$ 1160$, and $\$ 1140$; the unpaid balance is $\$ 6000$.

Objective 4

Use summation notation to evaluate a series.

Use summation notation to evaluate a series.
Series
The indicated sum of the terms of a sequence is called a series.

We use a compact notation, called summation notation, to write a series from the general term of the corresponding sequence. The Greek letter sigma (Σ) is used to denote summation.

For example, the sum of the first six terms of the sequence with general term $\mathrm{a}_{n}=3_{n}+2$ is written as

$$
\sum_{i=1}^{6}(3 i+2) .
$$

The use of l as the index of summation has no connection with the complex number i.

CLASSROOM	Evaluating Series Written in Summation Notation
EXAMPLE 4	

Write out the terms and evaluate the series.
$\sum_{i=1}^{5}(2 i-4)$
Solution:
$=(2 \cdot 1-4)+(2 \cdot 2-4)+(2 \cdot 3-4)+(2 \cdot 4-4)+(2 \cdot 5-4)$
$=(2-4)+(4-4)+(6-4)+(8-4)+(10-4)$
$=-2+0+2+4+6$
$=10$

CLASSROOM
EXAMPLE 4
Evaluating Series Written in Summation Notation (cont'd)
Write out the terms and evaluate the series.
$\sum_{i=2}^{6}(i+1)(i-2)$
Solution:
$=(2+1)(2-2)+(3+1)(3-2)+(4+1)(4-2)+$ $(5+1)(5-2)+(6+1)(6-2)$
$=3(0)+4(1)+5(2)+6(3)+7(4)$
$=0+4+10+18+28$
$=60$

CLASSROOM	
EXAMPLE 4	Evaluating Series Written in Summation Notation (cont'd)

Write out the terms and evaluate each series.
$\sum_{i=1}^{4}(2 i)^{2}$

Solution:
$=(2 \cdot 1)^{2}+(2 \cdot 2)^{2}+(2 \cdot 3)^{2}+(2 \cdot 4)^{2}$
$=2^{2}+4^{2}+6^{2}+8^{2}$
$=4+16+36+64$
$=120$

Objective 5

Write a series with summation notation.

$$
\begin{aligned}
& \begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 5
\end{array} \\
& \text { Write each with summation notation. } \\
& \begin{aligned}
& 3+12+27+48+75 \\
& \text { Solution: }=3(1+4+9+16+25) \\
&=3\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}\right) \\
&=\sum_{i=1}^{5} 3 i^{2}
\end{aligned}
\end{aligned}
$$

$7+12+17+22$
The terms increase by 5 , so $5 i$ is part of the general term. If $i=1$, $5 i=5$, but since the first term is 7 , we must add 2 to $5 i$ to get 7 . There are four terms, so

$$
=\sum_{i=1}^{4}(5 i+2)
$$

Objective 6

Find the arithmetic mean (average) of a group of numbers.

Find the arithmetic mean (average) of a group of numbers.

Arithmetic Mean or Average

The arithmetic mean, or average, of a group of numbers is symbolized x and is found by dividing the sum of the numbers by the number of numbers. That is,

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

The values of x_{i} represent the individual numbers in the group, and n represents the number of numbers

CLASSROON EXAMPLE 6

The following table shows the number of FDIC-insured financial institutions for each year during the period from 2002 through 2008.
What is the average number of institutions per year for the 5 -yr period 2004-2008?

Solution
$\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{\sum_{i=1}^{5} x_{i}}{5}$
$=\frac{8988+8845+8691+8544+8314}{5}$
$=\frac{43382}{5}=8676.4$ or ≈ 8676 institutions

(12.2) Arithmetic Sequences

Objectives
1 Find the common difference of an arithmetic sequence.
2 Find the general term of an arithmetic sequence.
3 Use an arithmetic sequence in an application.
4 Find any specified term or the number of terms of an arithmetic sequence.

5 Find the sum of a specified number of terms of an arithmetic sequence.

Find the common difference of an arithmetic sequence.

Arithmetic Sequence

An arithmetic sequence, or arithmetic progression, is a sequence in which each term after the first is found by adding a constant number to the preceding term.

CLASSROOM	Finding the Common Difference
EXAMPLE 1	

Find d for the arithmetic sequence
$1, \frac{4}{3}, \frac{5}{3}, 2, \frac{7}{3}, \frac{8}{3}, 3, \ldots$
Solution:

You should find the difference for all pairs of adjacent terms to determine if the sequence is arithmetic. In this case, we are given that the sequence is arithmetic, so d is the difference between any two adjacent terms. Choose the terms $\frac{5}{3}$ and $\frac{4}{3}$.

$$
d=\frac{5}{3}-\frac{4}{3}=\frac{1}{3}
$$

Find the general term of an arithmetic sequence.

General Term of an Arithmetic Sequence

The general term of an arithmetic sequence with first term a_{1} and common difference d is

$$
a_{n}=a_{1}+(n-1) d .
$$

$\begin{aligned} & \text { CLASSROOM } \\ & \text { EXAMPLE } 2\end{aligned}$ Writing the Terms of a Sequence from the First Term and the Common Difference
Write the first five terms of the arithmetic sequence with first term 5 and common difference $1 / 2$.

Solution:

Given $a_{1}=5$ and $d=1 / 2$,

$$
\begin{aligned}
& a_{2}=a_{1}+d=5+1 / 2=51 / 2 \\
& a_{3}=a_{2}+d=51 / 2+1 / 2=6 \\
& a_{4}=a_{3}+d=6+1 / 2=61 / 2 \\
& a_{5}=a_{4}+d=61 / 2+1 / 2=7
\end{aligned}
$$

The first five terms of the sequence are $5,5 \frac{112}{2}, 6,61 / 2,7$.

Find the general term of the arithmetic sequence $4,2,0,-2, \ldots$
Solution:
To find d, subtract any two adjacent terms.

$$
d=-2-0=-2
$$

The first term is $a_{1}=4$.
Now find $a_{n} . \quad a_{n}=a_{1}+(n-1) d$

$$
=4+(n-1)(-2)
$$

$$
=4-2 n+2
$$

$$
=-2 n+6
$$

Thus $a_{20}=-2(20)+6=-40+6=-34$.

CLASSROOM Applying an Arithmetic Sequence

How much will be in an account if an initial deposit of $\$ 5000$ is followed by a $\$ 250$ contribution each month for 36 months? Solution:

After 1 month, the account will have $\$ 5000+1 \cdot \$ 250=\$ 5250$.

After 2 months, the account will have $\$ 5000+2 \cdot \$ 250=\$ 5500$.

In general, after n months the account will have $\$ 5000+n \cdot \$ 250$

Thus, after 36 months, the account will have $\$ 5000+36 \cdot \$ 250=\$ 14,000$.

Objective 4

Find any specified term or the number of terms of an arithmetic sequence.

CLASSROOM

 Finding Specified Terms in SequenceFind the indicated term for the arithmetic sequence.
Given $a_{1}=-15$ and $d=-4$, find a_{12}
Solution:

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d \\
a_{12} & =a_{1}+(12-1) d \\
& =-15+11(-4) \\
& =-59
\end{aligned}
$$

Given $a_{3}=2$ and $a_{10}=23$, find a_{15}

Solution

Use $a_{n}=a_{1}+(n-1) d$ to write a system of equations.

$$
\begin{aligned}
a_{3} & =a_{1}+(3-1) d \\
2 & =a_{1}+2 d \\
a_{10} & =a_{1}+(10-1) d \\
23 & =a_{1}+9 d
\end{aligned}
$$

To eliminate a_{1}, multiply (1) by -1 and add the result to (2)

$$
\begin{aligned}
-2 & =-a_{1}-2 d \\
23 & =a_{1}+9 d \\
\hline 21 & = \\
3 & =d
\end{aligned}
$$

CLASSROOM

Solution:

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d & & \text { Formula for } \boldsymbol{a}_{n} \\
-46 & =8+(n-1)(-3) & & \boldsymbol{d}=\mathbf{5}-\mathbf{8}=\mathbf{- 3} \\
-46 & =8-3 n+3 & & \text { Distributive pr } \\
-57 & =-3 n & & \text { Simplify } \\
19 & =n & & \text { Divide by }-\mathbf{3} .
\end{aligned}
$$

The sequence has 19 terms

Objective 5

Find the sum of a specified number of terms of an arithmetic sequence.

Find the sum of the first nine terms of the arithmetic sequence in which $a_{n}=5+2 n$. Solution:

Since we want the sum of the first nine terms, we'll find a_{1} and a_{9} using $a_{n}=5+2 n$.

$$
\begin{aligned}
& a_{1}=5+2(1)=7 \\
& a_{9}=5+2(9)=23
\end{aligned}
$$

CLASSROOM Finding the Sum of the First n Terms of an Arithmetic Sequence (cont'd) EXAMPLE 7

Now use the formula for the sum of the first n terms of an arithmetic sequence.

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left(a_{1}+a_{n}\right) \\
S_{n} & =\frac{9}{2}\left(a_{1}+a_{9}\right) \\
& =\frac{9}{2}(7+23) \\
& =\frac{9}{2}(30) \\
& =135
\end{aligned}
$$

Find the sum of specified number of terms of an

 arithmetic sequence.Sum of the First \boldsymbol{n} Terms of an Arithmetic Sequence
The sum of the first n terms of the arithmetic sequence with the first term a_{1}, nth term a_{n}, and common difference d is given by either formula

$$
S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right) \quad \text { or } \quad S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]
$$

CLASSROOM
EXAMPLE 8
Finding the Sum of the First n Terms of an Arithmetic Sequence
Find the sum of the first 10 terms of the arithmetic sequence having first term -7 and common difference 3 .

Solution:

We are given $a_{1}=-7, d=3$, and $n=10$. Use the second formula for the sum of the arithmetic sequence

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
S_{10} & =\frac{10}{2}[2(-7)+(10-1) 3] \\
& =5[-14+(9) 3] \\
& =5(-14+27) \\
& =65
\end{aligned}
$$

Geometric Sequences

Geometric Sequence

A geometric sequence, or geometric progression, is a sequence in which each term after the first is found by multiplying the preceding term by a nonzero constant.

Find the common ratio of a geometric sequence.

We find the constant multiplier, called the common ratio, by dividing any term after the first by the preceding term. That is, the common ratio is

$$
r=\frac{a_{n+1}}{a_{n}}
$$

\section*{| CLASSROOM | |
| :--- | :--- |
| EXAMPLE 1 | Finding the Common Ratio |
 Determine r for the geometric sequence $1,-2,4,-8,16, \ldots$
 Solution:}

You should find the ratio for all pairs of adjacent terms to determine if the sequence is geometric. In this case, we are given that the sequence is geometric, so to find r, choose any two adjacent terms and divide the second one by the first one. Choose the terms 1 and -2 .

$$
r=\frac{-2}{1}=-2
$$

Notice that any other two adjacent terms could have been used with the same result.

The common ration is $r=-2$.

Find the general term of a geometric sequence.

General Term of a Geometric Sequence

The general term of the geometric sequence with first term a_{1} and common ratio r is

$$
a_{n}=a_{1} r^{n-1} .
$$

In finding $a_{1} r^{n-1}$, be careful to use the correct order of operations. The value of r^{m-1} must be found first. Then multiply the result by a_{1}.

CLASSROOM	
EXAMPLE 3	Finding Specified Terms in Sequences

Find the indicated term for each geometric sequence.

Solution:

$$
\begin{array}{rlrl}
a_{1} & =-2, r=5 ; a_{6} & & 4,28,196,1372, \ldots ; a_{8} \\
a_{n} & =a_{1} r^{n-1} & & \text { The common ratio is } r=\frac{28}{4}=7 . \\
a_{6} & =-2(5)^{6-1} & & \text { Substitute into the formula for } a_{n} . \\
& =-2(5)^{5} & & a_{n}=a_{1} r^{n-1} \\
& =-6250 & & a_{8}=4(7)^{8-1} \\
& =3,294,172
\end{array}
$$

CLASSROON
EXAMPLE 4 Writing the Terms of a Sequence
Write the first five terms of the geometric sequence whose first term is 3 and whose common ratio is -2 .
Solution:

$$
a_{1}=3
$$

$$
a_{2}=a_{1} r=3(-2)=-6
$$

$$
a_{3}=a_{2} r=-6(-2)=12
$$

$$
a_{4}=a_{3} r=12(-2)=-24
$$

$$
a_{5}=a_{4} r=-24(-2)=48
$$

Objective 4

Find the sum of a specified number of terms of a geometric sequence.

Find the sum of a specified number of terms of a geometric sequence.

Sum of the First \boldsymbol{n} Terms of a Geometric Sequence
The sum of the first n terms of the geometric sequence with the first term a_{1} and common ratio r is

$$
S_{n}=\frac{a_{1}\left(r^{n}-1\right)}{r-1} \quad(r \neq 1) .
$$

CLASSROOM
Finding the Sum of the First \boldsymbol{n} Terms of a Geometric Sequence
Evaluate the sum of the first six terms of the geometric sequence with first term 6 and common ratio 3

Solution:

$$
\begin{aligned}
S_{n} & =\frac{a_{1}\left(r^{n}-1\right)}{r-1} \\
S_{6} & =\frac{6\left(3^{6}-1\right)}{3-1} \\
& =\frac{6(729-1)}{2} \\
& =3(728) \\
& =2184
\end{aligned}
$$

CLASSROOM EXAMPLE 6
Evaluate $\sum_{i=1}^{6} 3\left(\frac{1}{4}\right)^{t}$
Solution:

$$
\text { For } \sum_{i=1}^{6} 3\left(\frac{1}{4}\right)^{i}, a_{1}=\frac{3}{4} \text { and } r=\frac{1}{4} \text {. Find } S_{6} \text {. }
$$

$$
S_{n}=\frac{a_{1}\left(r^{n}-1\right)}{r-1} \quad=-1\left(\frac{1}{4096}-\frac{4096}{4096}\right)
$$

$$
S_{6}=\frac{\frac{3}{4}\left[\left(\frac{1}{4}\right)^{6}-1\right]}{\frac{1}{4}-1}=-1\left(\frac{-4095}{4096}\right)
$$

$$
=\frac{\frac{3}{4}\left[\frac{1}{4096}-1\right]}{-\frac{3}{4}} \quad=\frac{4095}{4096} \quad \text { or } \quad \approx 0.9998
$$

Apply the formula for the future value of an ordinary annuity.

Future Value of an Ordinary Annuity

The future value for an ordinary annuity is

$$
S=R\left[\frac{(1+i)^{n}-1}{i}\right]
$$

where S is the future value,
R is the payment at the end of each period,
i is the interest rate per period, and
n is the number of periods.

CLASSROOM EXAMPLE 7

Applying the Formula for the Future Value of an Annuity
Sonny's Building Specialties deposits $\$ 2500$ at the end of each year into an account paying 4% per yr, compounded annually. Find the total amount on deposit after 10 yr

Solution:

$$
\begin{aligned}
S & =R\left[\frac{(1+i)^{n}-1}{i}\right] \\
S & =2500\left[\frac{(1+0.04)^{10}-1}{0.04}\right] \\
& =30,015.268
\end{aligned}
$$

The future value of the annuity is $\$ 30,015.27$.

Find the sum of an infinite number of terms of certain geometric sequences.

Sum of the Terms of an Infinite Geometric Sequence
The sum S of the terms of an infinite geometric sequence with the first term a_{1} and common ratio $r,|r|<1$, is

$$
\boldsymbol{S}=\frac{a_{1}}{1-\boldsymbol{r}} .
$$

If $|r| \geq 1$, then the sum does not exist.

$$
S=\$ 2000\left[\frac{(1+0.005)^{120}-1}{0.005}\right]
$$

$$
=\$ 327,758.69
$$

CLASSROOM EXAMPLE 8

 Finding the Sum of the Terms of an Infinite Geometric SequenceFind the sum of the terms of the infinite geometric sequence with
$a_{1}=-2$ and $r=-\frac{5}{8}$

Solution:

Use the formula for the sum of the terms of an infinite geometric sequence with $a_{1}=-2$ and $r=-\frac{5}{8}$.

$$
S=\frac{a_{1}}{1-r}=\frac{-2}{1-\left(-\frac{5}{8}\right)}=\frac{-2}{\frac{13}{8}} \quad=-\frac{16}{13}
$$

CLASSROOM Finding the Sum of the Terms of an Infinite Geometric Series EXAMPLE 9

$$
\text { Find } \sum_{i=1}^{\infty}\left(\frac{1}{5}\right)\left(\frac{5}{7}\right)^{i}
$$

Solution:
For $\sum_{i=1}^{\infty}\left(\frac{1}{5}\right)\left(\frac{5}{7}\right)^{i}, a_{1}=\frac{1}{7}$ and $r=\frac{5}{7}$.

$$
S=\frac{a_{1}}{1-r}=\frac{\frac{1}{7}}{1-\frac{5}{7}}=\frac{\frac{1}{7}}{\frac{2}{7}}=\frac{1}{2}
$$

(12.4) The Binomial Theorem

Objectives

1 Expand a binomial raised to a power.
2 Find any specified term of the expansion of a binomial.

Expand a binomial raised to a power.

```
Pascal's Triangle
1
    \(\begin{array}{lllll}1 & & 2 & & 1 \\ & 3 & & 3 & 1\end{array}\)
\(\begin{array}{lllll}1 & 4 & 6 & 4 & 1\end{array}\)
    and so on
```


Expand a binomial raised to a power.

\boldsymbol{n} factorial (\boldsymbol{n} !
For any positive integer n,

$$
n!=n(n-1)(n-2)(n-3) \cdots(2)(1) .
$$

By definition, 0!=1

CLASSROOM EXAMPLE 1	Evaluating Factorials
Evaluate 4!.	
Solution:	
$=4 \cdot 3 \cdot 2 \cdot 1$	
$=24$	

Expand a binomial raised to a power.

CLASSROOM	
EXAMPLE 2	Evaluating Expressions Involving Factorials

Find the value of each expression.
Solution:

$$
\begin{aligned}
& \frac{7!}{6!1!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)(1)}=\frac{7}{1}=7 \\
& \frac{7!}{3!4!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(3 \cdot 2 \cdot 1)(4 \cdot 3 \cdot 2 \cdot 1)}=\frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1}=\frac{7 \cdot 5}{1}=35 \\
& \frac{7!}{2!5!}=\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(2 \cdot 1)(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1)}=\frac{7 \cdot 6}{2 \cdot 1}=\frac{7 \cdot 3}{1}=21
\end{aligned}
$$

$$
\frac{7!}{7!0!}=\frac{1}{0!} \quad=\frac{1}{1} \quad=1
$$

Expand a binomial raised to a power.

$$
\begin{aligned}
& \text { Binomial Theorem } \\
& \text { For any positive integer } n \text {, } \\
& (x+y)^{n}= \\
& =x^{n}+\frac{n!}{(n-1)!1!} x^{n-1} y+\frac{n!}{(n-2)!2!} x^{n-2} y^{2} \\
& \\
& +\frac{n!}{3!(n-3)!} x^{n-3} y^{3}+\cdots+\frac{n!}{(n-1)!1!} x y^{n-1}+y^{n}
\end{aligned}
$$

The binomial theorem can be written in summation notation as

$$
(x+y)^{n}=\sum_{i=0}^{n} \frac{n!}{(n-i)!i!} x^{n-i} y^{i}
$$

$$
\begin{aligned}
& \begin{array}{l|l}
\text { CLASSROOM } & \text { Using the Binomial Theorem } \\
\text { EXAMPLE } 4 &
\end{array} \\
& \text { EXAMPLE } 4 \\
& \text { Expand }\left(x^{2}+3\right)^{5} \text {. } \\
& \text { Solution: } \\
& =\left(x^{2}\right)^{5}+\frac{5!}{4!1!}\left(x^{2}\right)^{4}(3)^{1}+\frac{5!}{3!2!}\left(x^{2}\right)^{3}(3)^{2}+\frac{5!}{2!3!}\left(x^{2}\right)^{2}(3)^{3} \\
& +\frac{5!}{1!4!}\left(x^{2}\right)^{1}(3)^{4}+3^{5} \\
& =x^{10}+5 x^{8}(3)^{1}+10 x^{6}(9)+10 x^{4}(27)+5 x^{2}(81)+243 \\
& =x^{10}+15 x^{8}+90 x^{6}+270 x^{4}+405 x^{2}+243
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 5
\end{array} \\
& \text { Using the Binomial Theorem } \\
& \text { Expand }\left(\frac{x}{4}-3 y\right)^{4} \\
& \text { Solution: } \\
& \begin{array}{c}
=\left(\frac{x}{4}\right)^{4}+\frac{4!}{3!1!}\left(\frac{x}{4}\right)^{3}(-3 y)^{1}+\frac{4!}{2!2!}\left(\frac{x}{4}\right)^{2}(-3 y)^{2} \\
\quad+\frac{4!}{1!3!}\left(\frac{x}{4}\right)^{1}(-3 y)^{3}+(-3 y)^{4} \\
=\frac{x^{4}}{4^{4}}+4 \cdot \frac{x^{3}}{4^{3}}(-3 y)+6 \cdot \frac{x^{2}}{4^{2}}\left(9 y^{2}\right)+4 \cdot \frac{x}{4}\left(-27 y^{3}\right)+81 y^{4} \\
=\frac{1}{256} x^{4}-\frac{3}{16} x^{3} y+\frac{27}{8} x^{2} y^{2}-27 x y^{3}+81 y^{4}
\end{array}
\end{aligned}
$$

Find any specified term of the expansion of a binomial.

rth Term of the Binomial Expansion

If $n \geq r-1$, then the r th term of the expansion of $(x+y)^{n}$ is

$$
\frac{n!}{(r-1)![n-(r-1)]!} x^{n-(r-1)} y^{r-1}
$$

CLASSROOM EXAMPLE 6 Finding a Single Term of a Binomial Expansion
Find the fifth term of $\left(\frac{x}{2}-y\right)^{9}$.
Solution:
Solution:
In the fifth term of $\left(\frac{x}{2}-y\right)^{9}$, the exponent on $(-y)$ is $5-1=4$ and the exponent on $\left(\frac{x}{2}\right)$ is $9-4=5$.

$$
\text { The fifth term is } \quad \begin{aligned}
=\frac{9!}{5!4!}\left(\frac{x}{2}\right)^{5}(-y)^{4}= & \frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{x^{5}}{2^{5}} \cdot y^{4} \\
& =126 \cdot \frac{1}{32} x^{5} y^{4} \\
& =\frac{63}{16} x^{5} y^{4}
\end{aligned}
$$

