

Objective 1 Find the terms of a sequence, given the general term. Side 121-3

Slide 12.1-

Objective 3

Use sequences to solve applied problems.

CLASSROOM EXAMPLE 3 Using a Sequence in an Application

Saad Alarachi borrows \$10,000 and agrees to pay a monthly payment of \$1000 plus 2% of the unpaid balance.

Solution:

Slide 12.

Slide 12.1- 1

Month	Interest	Payment	Unpaid balance
0			10,000
1	10,000(0.02) = 200	1000 + 200 = 1200	10,000 - 1000 = 9000
2	9000(0.02) = 180	1000 + 180 = 1180	9000 - 1000 = 8000
3	8000(0.02) = 160	1000 + 160 = 1160	8000 - 1000 = 7000
4	7000(0.02) = 140	1000 + 140 = 1140	7000 - 1000 = 6000

Slide 12.1- 8

Slide 12.1- 10

The payments are 1200, 1180, 1160, and 1140; the unpaid balance is 6000.

Objective 4 Use summation notation to evaluate a series.

Use summation notation to evaluate a series. Series The indicated sum of the terms of a sequence is called a series. We use a compact notation, called summation notation, to write a series from the general term of the corresponding sequence. The Greek letter sigma (Σ) is used to denote summation. For example, the sum of the first six terms of the sequence with general term $a_n = 3_n + 2$ is written as $\sum_{l=1}^{6} (3l+2).$ The use of *l* as the index of summation has no connection with the complex number *i*.

 CLASSROOM EXAMPLE 4
 Evaluating Series Written in Summation Notation

 Write out the terms and evaluate the series.
 $\sum_{i=1}^{5} (2i-4)$

 Solution:
 = $(2 \cdot 1 - 4) + (2 \cdot 2 - 4) + (2 \cdot 3 - 4) + (2 \cdot 4 - 4) + (2 \cdot 5 - 4)$

 = (2 - 4) + (4 - 4) + (6 - 4) + (8 - 4) + (10 - 4)

 = -2 + 0 + 2 + 4 + 6

 = 10

 CLASSROOM EXAMPLE 4
 Evaluating Series Written in Summation Notation (cont'd)

 Write out the terms and evaluate the series.
 $\sum_{i=2}^{6} (i+1)(i-2)$

 Solution:
 = (2+1)(2-2) + (3+1)(3-2) + (4+1)(4-2) + (5+1)(5-2) + (6+1)(6-2)

 = 3(0) + 4(1) + 5(2) + 6(3) + 7(4) = 0 + 4 + 10 + 18 + 28

 = 60 Silde 121-12

 CLASSROOM EXAMPLE 1
 Finding the Common Difference

 Find d for the arithmetic sequence
 $1, \frac{4}{3}, \frac{5}{3}, 2, \frac{7}{3}, \frac{8}{3}, 3, ...$

 Solution:

 You should find the difference for all pairs of adjacent terms to determine if the sequence is arithmetic. In this case, we are given that the sequence is arithmetic, so d is the difference between any two adjacent terms. Choose the terms $\frac{5}{3}$ and $\frac{4}{3}$.

 $d = \frac{5}{3} - \frac{4}{3} = \frac{1}{3}$

CLASSROOM EXAMPLE 2	Writing the Terms of a Sequence from the First Term and the Common Difference
Write the first five and common diffe	e terms of the arithmetic sequence with first term 5 erence $\frac{1}{2}$.
Solution:	
Given $a_1 = 5$ and	$d = \gamma_2$,
$a_2 = a$ $a_3 = a$ $a_4 = a$ $a_5 = a$	$u_1 + d = 5 + \frac{1}{2} = 5 \frac{1}{2}$ $u_2 + d = 5 \frac{1}{2} + \frac{1}{2} = 6$ $u_3 + d = 6 + \frac{1}{2} = 6 \frac{1}{2}$ $u_4 + d = 6 \frac{1}{2} + \frac{1}{2} = 7$
The first five term	is of the sequence are 5, 5 $\frac{1}{2}$, 6, 6 $\frac{1}{2}$, 7.

CLASSROOM EXAMPLE 3	Finding the General Term of an Arithmetic	c Sequence	
Find the general	term of the arithmetic sequence 4, 2, 0, -2	2,	
Solution:			
To find <i>d</i> , subtrac	t any two adjacent terms.		
	d = -2 - 0 = -2		
The first term is $a_1 = 4$.			
Now find a_n . $a_n = a_1 + (n-1)d$			
	= 4 + (n-1)(-2)		
	=4-2n+2		
	= -2n + 6		
Thus $a_{20} = -2(20)$	+6 = -40 + 6 = -34.		
nvright © 2012, 2008, 2004, Pes	rson Education. Inc.	Slide 1	

CLASSROOM EXAMPLE 4	Applying an Arithmetic Sequence	
How much will be followed by a \$25 Solution:	in an account if an initial deposit of \$5000 is 0 contribution each month for 36 months?	
After 1 month, the \$5000 + 1	e account will have • \$250 = \$5250.	
After 2 months, th \$5000 + 2	e account will have • \$250 = \$5500.	
In general, after n \$5000 + n	months the account will have\$250.	
Thus, after 36 mo \$5000 + 3	nths, the account will have 36 • \$250 = \$14,000.	

CLASSROOM EXAMPLE 5	Finding Specified Terms in Sequence (cont'd)					
Find the indicated term for the arithmetic sequence.						
Given a ₃ = 2 and	a ₁₀ = 23, find a ₁₅ .					
Solution:						
Use $a_n = a_1 + (n - 1)$	1) <i>d</i> to write a system of equations.					
	$a_3 = a_1 + (3-1)d$					
	$2 = a_1 + 2d$					
	$a_{10} = a_1 + (10 - 1)d$					
	$23 = a_1 + 9d$					
To eliminate a ₁ , n	To eliminate a_1 , multiply (1) by -1 and add the result to (2).					
$-2 = -a_1 - 2d$						
$23 = a_1 + 9d$						
	21 = 7d					
	3 = d					

Slide 12.2- 10

Objective 5

Find the sum of a specified number of terms of an arithmetic sequence.

Slide 12.2-

 CLASSROOM EXAMPLE 7
 Finding the Sum of the First *n* Terms of an Arithmetic Sequence in which $a_n = 5 + 2n$.

 Find the sum of the first nine terms of the arithmetic sequence in which $a_n = 5 + 2n$.

 Solution:

 Since we want the sum of the first nine terms, we'll find a_1 and a_9 using $a_n = 5 + 2n$.

 $a_1 = 5 + 2(1) = 7$ $a_9 = 5 + 2(9) = 23$

CLASSROOM EXAMPLE 8 Finding the Sum of the First n Terms of an Arithmetic Sequence

Find the sum of the first 10 terms of the arithmetic sequence having first term -7 and common difference 3.

Solution:

We are given $a_1 = -7$, d = 3, and n = 10. Use the second formula for the sum of the arithmetic sequence.

$$S_n = \frac{n}{2} \Big[2a_1 + (n-1)d \Big]$$

$$S_{10} = \frac{10}{2} \Big[2(-7) + (10-1)3 \Big]$$

$$= 5 \Big[-14 + (9)3 \Big]$$

$$= 5(-14+27)$$

$$= 65$$

 $\label{eq:standard} \begin{array}{|c|c|c|} \hline \textbf{CLASSROOM} \\ \hline \textbf{EXAMPLE 9} \end{array} \quad \textbf{Using S}_n \text{ to Evaluate a Summation} \\ \hline \textbf{Evaluate } \sum_{i=1}^{20} (4i+1). \\ \hline \textbf{Solution:} \\ \hline \textbf{To find the first and last (20^{th}) terms, let $n=1$ and $n=20$ and $a_n=4n+1$.} \\ & a_1=4(1)+1=5 \\ & a_{20}=4(20)+1=81 \\ \hline \textbf{Now find S}_{20}. \qquad S_n=\frac{n}{2}(a_1+a_n) \\ & S_{20}=\frac{20}{2}(5+81) \\ & =10(86) \\ & = 860 \\ \hline \textbf{Cervicite 0.2012 2005 2004 Person Effective. Inc.} \end{array}$

CLASSROO EXAMPLE	M Finding Sp	ecified Terms in Sequences	
Find the indic	Find the indicated term for each geometric sequence.		
Solution: $a_1 = -2, r = 5;$	a ₆	4, 28, 196, 1372,; a ₈	
$a_n = a_1 r^{n-1}$		The common ratio is $r = \frac{28}{4} = 7$.	
$a_6 = -2(5)^{6-1}$		Substitute into the formula for a_n .	
= -2(5) ⁵		$a_n = a_1 r^{n-1}$	
= -6250		$a_8 = 4(7)^{8-1}$	
		= 3,294,172	
Copyright © 2012, 2008, 20	04 Pearson Education Inc.	Slide 12.3- 7	

Objective 4 Find the sum of a specified number of terms of a geometric sequence.

CLASSROOM EXAMPLE 6	Using the Form	nula for S _n to Find a	Summation
Evaluate $\sum_{i=1}^{6} 3\left(\frac{1}{4}\right)$			
Solution:			
For $\sum_{i=1}^{6} 3(\frac{1}{4})^{i}$, $a_{1} =$	$\frac{3}{4}$ and $r = \frac{1}{4}$. Find	1 S ₆ .	
$S_n =$	$\frac{a_1(r^n-1)}{r-1}$	$= -1(\frac{1}{4096} - \frac{1}{2})$	$\frac{4096}{4096}$)
$S_6 = \cdot$	$\frac{\frac{3}{4}\left[\left(\frac{1}{4}\right)^6 - 1\right]}{\frac{1}{4} - 1}$	$= -1\left(\frac{-4095}{4096}\right)$	
=	$\frac{\frac{3}{4}\left[\frac{1}{4096}-1\right]}{-\frac{3}{4}}$	$=\frac{4095}{4096}$ or	≈ 0.9998
Copyright © 2012, 2008, 2004 Pea	rson Education. Inc.		Slide 12.3- 12

CLASSROOM EXAMPLE 2	Evaluating E	xpressions li	volving Fa	ictorials
Find the value of	each expressio	n.		
Solution:				
$\frac{7!}{6!1!} = \frac{7 \cdot 6}{(6 \cdot 5 \cdot 4)}$	$\frac{5\cdot 4\cdot 3\cdot 2\cdot 1}{4\cdot 3\cdot 2\cdot 1)(1)}$	$=\frac{7}{1}$	= 7	
$\frac{7!}{3!4!} = \frac{7 \cdot 6}{(3 \cdot 2 \cdot 2)}$	$\frac{5\cdot 4\cdot 3\cdot 2\cdot 1}{1)(4\cdot 3\cdot 2\cdot 1)}$	$=\frac{7\cdot 6\cdot 5}{3\cdot 2\cdot 1}$	$=\frac{7\cdot 5}{1}$	= 35
$\frac{7!}{2!5!} = \frac{7 \cdot 6}{(2 \cdot 1)(2}$	$\frac{5\cdot 4\cdot 3\cdot 2\cdot 1}{(5\cdot 4\cdot 3\cdot 2\cdot 1)}$	$=\frac{7\cdot 6}{2\cdot 1}$	$=\frac{7\cdot 3}{1}$	= 21
$\frac{7!}{7!0!} = \frac{1}{0!}$		$=\frac{1}{1}$	=1	
Copyright © 2012, 2008, 2004 Pea	rson Education. Inc.			Slide 12.4- 5

CLASSROOM EXAMPLE 3	Evaluating Binomial Coefficients	
Evaluate $_{8}C_{5}$.		
Solution:		
$=\frac{8!}{5!(8-5)!}$		
$=\frac{8!}{5!3!}$		
$=\frac{8\cdot7\cdot6\cdot5\cdot4\cdot3}{(5\cdot4\cdot3\cdot2\cdot1)(3)}$	$\frac{\cdot 2 \cdot 1!}{3 \cdot 2 \cdot 1)}$	
$=\frac{40320}{720}$		
= 56		
C		Slide 12 4-7

CLASSROOM EXAMPLE 4	Using the Binomial Theorem	
Expand (x ² + 3) ⁵ .		
Solution:		
$= (x^{2})^{5} + \frac{5!}{4!1!}(x^{2})^{5} + \frac{5!}{1!4!}(x^{2})^{5}$	$ x^{2} \Big)^{4} (3)^{1} + \frac{5!}{3!2!} (x^{2})^{3} (3)^{2} + \frac{5!}{2!3!} (x^{2})^{2} (3)^{3} (3)^{2} + x^{2} (3)^{3} (3)^{4} + 3^{5} $	3
$=x^{10}+5x^{8}(3)^{1}$	$+10x^{6}(9)+10x^{4}(27)+5x^{2}(81)+243$	
$=x^{10}+15x^8+9$	$0x^6 + 270x^4 + 405x^2 + 243$	
Convright @ 2012 2008 2004 Pea	rean Education Inc	Slide 12.4

$$\begin{array}{c} \hline \textbf{CLASSROOM} \\ \hline \textbf{EXAMPLE 5} \\ \hline \textbf{Using the Binomial Theorem} \\ \hline \textbf{Expand} \left(\frac{x}{4} - 3y\right)^4. \\ \hline \textbf{Solution:} \\ = \left(\frac{x}{4}\right)^4 + \frac{4!}{3!1!} \left(\frac{x}{4}\right)^3 (-3y)^1 + \frac{4!}{2!2!} \left(\frac{x}{4}\right)^2 (-3y)^2 \\ & \quad + \frac{4!}{1!3!} \left(\frac{x}{4}\right)^1 (-3y)^3 + (-3y)^4 \\ \hline \textbf{Expand} \left(\frac{x}{4^3} + 4 \cdot \frac{x^3}{4^3} (-3y) + 6 \cdot \frac{x^2}{4^2} (9y^2) + 4 \cdot \frac{x}{4} (-27y^3) + 81y^4 \\ \hline \textbf{Expand} \left(\frac{x}{256} x^4 - \frac{3}{16} x^3 y + \frac{27}{8} x^2 y^2 - 27xy^3 + 81y^4 \\ \hline \textbf{Expand} \left(\frac{x}{256} x^2 + \frac{3}{16} x^3 y + \frac{27}{8} x^2 y^2 - 27xy^3 + 81y^4 \\ \hline \textbf{Expand} \left(\frac{x}{256} x^2 + \frac{3}{16} x^3 y + \frac{27}{8} x^2 y^2 - 27xy^3 + 81y^4 \\ \hline \textbf{Expand} \left(\frac{x}{256} x^2 + \frac{3}{16} x^3 y + \frac{27}{8} x^2 y^2 - 27xy^3 + 81y^4 \\ \hline \textbf{Expand} \left(\frac{x}{256} x^3 + \frac{3}{16} x^3 y + \frac{27}{8} x^2 y^2 - 27xy^3 + 81y^4 \\ \hline \textbf{Expand} \left(\frac{x}{256} x^3 + \frac{3}{16} x^3 y + \frac{27}{8} x^2 y^2 - 27xy^3 + 81y^4 \\ \hline \textbf{Expand} \left(\frac{x}{256} x^3 + \frac{3}{16} x^3 y + \frac{27}{8} x^2 y^2 - 27xy^3 + 81y^4 \\ \hline \textbf{Expand} \left(\frac{x}{256} x^3 + \frac{3}{16} x^3 y + \frac{27}{8} x^2 y^2 - 27xy^3 + 81y^4 \\ \hline \textbf{Expand} \left(\frac{x}{256} x^3 + \frac{3}{16} x^3 y + \frac{27}{8} x^2 y^2 - 27xy^3 + 81y^4 \\ \hline \textbf{Expand} \left(\frac{x}{256} x^3 + \frac{3}{16} x^3 y + \frac{27}{8} x^2 y^2 - 27xy^3 + 81y^4 \\ \hline \textbf{Expand} \left(\frac{x}{256} x^3 + \frac{3}{16} x^3 y + \frac{27}{8} x^2 y^2 - 27xy^3 + 81y^4 \\ \hline \textbf{Expand} \left(\frac{x}{256} x^3 + \frac{3}{16} x^3 + \frac{3}{16}$$

