

CLASSROOM EXAMPLE 1	Using Exponential Notation (cont'd)	
(-10)(-10)(-10))	
Solution:		
(-10) ³		
Read as "-10 cu	bed."	
$y \cdot y \cdot y \cdot y \cdot y$	$y \cdot y \cdot y \cdot y$	
y^8		
G		Slide 1 3-

CLASSROO EXAMPLE 2	М 2	Eva	uating Exponential Expressions	
Evaluate. 3 ⁴ Solution:				
$3 \cdot 3 \cdot 3 \cdot 3$	=	81	3 is used as a factor 4 times.	
(-3)(-3)	= 9	9	The base is –3.	
-3^{2} -(3·3)	= -	-9	There are no parentheses. The exponent 2 applies <i>only</i> to the number 3, not to -3 .	
	04 D	E de ce	der Ter	Slide 1.3-6

Find square roots. The negative square root of 49 is written $-\sqrt{49} = -7$. Since the square of any nonzero real number is positive, the square root of a negative number, such as $\sqrt{-49}$ is not a real number. The symbol $\sqrt{}$ is used only for the *positive* square root, except that $\sqrt{0} = 0$. The symbol $\sqrt{}$ is used for the negative square root.

Slide 1.3-

CLASSRO EXAMPLE	ОМ Е 3	Finding Square Roots	
Find each s	quare	root that is a real number.	
	Solu	ition:	
$-\sqrt{\frac{121}{81}}$	= -	$\frac{11}{9}$	
$\sqrt{49}$	= 7		
-\sqrt{49}	= -	7	
√-49	Not the r	a real number, because the negative sign is insi radical sign. No <i>real number</i> squared equals –49	de).
Convright @ 2012, 2008	2004 Pea	rson Education. Inc. Sliv	de 1.3- 10

CLASSROOM EXAMPLE 7	valuating Algebraic Expressions (cor	nťď)		
Evaluate the expression $w^2 + 2z^3$ if $w = 4$, $x = -12$, $y = 64$ and z				
Solution:				
$= (4)^2 + 2(-3)^2$	Substitute $w = 4$ and $z = -3$.			
= 16 + 2(-27	Evaluate the powers.			
= 16 - 54	Multiply.			
= -38	Subtract.			