1.3 Exponents, Roots, and Order of Operations

Objectives
1 Use exponents.
2 Find square roots

3 Use the order of operations.
4 Evaluate algebraic expressions for given values of variables.

Use exponents.

In algebra we use exponents as a way of writing products of repeated factors.

$$
\underbrace{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}_{5 \text { factors of } 2}=2^{5}
$$

The number 5 shows that 2 is used as a factor 5 times.
The number 5 is the exponent, and 2 is the base.

Use exponents.

Exponential Expression
If a is a real number and n is a natural number, then

$$
\mathbf{a}^{n}=\underbrace{\mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \ldots \cdot \mathbf{a}}_{n \text { factors of } a}
$$

where n is the exponent, a is the base, and a^{n} is an exponential expression. Exponents are also called powers.

```
CLASSROOM Using Exponential Notation
EXAMPLE 1
Write using exponents.
```

$\frac{2}{7} \cdot \frac{2}{7} \cdot \frac{2}{7} \cdot \frac{2}{7}$

Solution:
Here, $\frac{2}{7}$ is used as a factor 4 times.
$\underbrace{\frac{2}{7} \cdot \frac{2}{7} \cdot \frac{2}{7} \cdot \frac{2}{7}}_{4 \text { factors of } \frac{2}{7}}=\left(\frac{2}{7}\right)^{4}$
Read as " $\frac{2}{7}$ to the fourth power."

Use exponents.

Sign of an Exponential Expression

The product of an odd number of negative factors is negative.

The product of an even number of negative factors is positive.

It is important to distinguish between $-a^{n}$ and $(-a)$

Be careful when evaluating an exponential expression with a negative sign.

Find square roots.

The opposite (inverse) of squaring a number is called taking its square root.

The square root of 49 is 7
Another square root of 49 is -7 , since $(-7)^{2}=49$

Thus 49 has two square roots: 7 and -7 .

We write the positive or principal square root of a number with the symbol $\sqrt{ }$, called a radical symbol.

Find square roots.

The negative square root of 49 is written

$$
-\sqrt{49}=-7 .
$$

Since the square of any nonzero real number is positive, the square root of a negative number, such as $\sqrt{-49}$ is not a real number.

Use the order of operations.

Order of Operations

1. Work separately above and below any fraction bar.
2. If grouping symbols such as parentheses (), brackets [], or absolute value bars | | are present, start with the innermost set and work outward.
3. Evaluate all powers, roots, and absolute values.
4. Multiply or divide in order from left to right.
5. Add or subtract in order from left to right

Use the order of operations.

Some students like to use the mnemonic "Please Excuse My Dear Aunt Sally" to help remember the rules for order of operations.

Be sure to multiply or divide in order from left to right. Then add or subtract in order from left to right

CLASSROOM EXAMPLE 6	Using the Order of Operations	
Simplify.		
$\frac{1}{2} \cdot 10-6+\sqrt{9}$		
$\frac{5}{6} \cdot 12-3(2)^{2}$		
Work separately above and below the fraction bar.		
Solution: $\frac{\frac{1}{2} \cdot 10-6+\sqrt{9}}{\frac{5}{6} \cdot 12-3(2)^{2}}=\frac{\frac{1}{2} \cdot 10-6+3}{\frac{5}{6} \cdot 12-3(4)}$ Evaluate the root and the power.		
	$=\frac{5-6+3}{10-3(4)}$	Multiply the fraction and whole number.
	$=\frac{2}{10-12} \quad=\frac{2}{-2}=-1$	Subtract and add in the numerator. Multiply 3(4).
Convishte2012.2008_2004 PearsonEducation_lnc._ Slide 1.3-15		

Evaluate algebraic expressions for given values of

 variables.Any sequence of numbers, variables, operation symbols, and/or grouping symbols formed in accordance with the rules of algebra is called an algebraic expression.

$$
6 a b, \quad 5 m-9 n, \quad \text { and } \quad-2\left(x^{2}+4 y\right)
$$

We evaluate algebraic expressions by substituting given values for the variables.

CLASSROOM \quad Evaluating Algebraic Expressions

Evaluate the expression if $w=4, x=-12, y=64$ and $z=-3$.
$\frac{5 x+z \sqrt{y}}{x-1}$
Solution:

$$
\begin{array}{ll}
=\frac{5(-12)+(-3) \sqrt{64}}{-12-1} & \text { Substitute } x=-12, y=64 \text { and } z=-3 . \\
=\frac{-60+(-3)(8)}{-13} & \begin{array}{l}
\text { Work separately above and below the } \\
\text { fraction bar. }
\end{array} \\
=\frac{-60-24}{-13}=\frac{-84}{-13}=\frac{84}{13}
\end{array}
$$

CLASSROOM
EXAMPLE 7
Evaluating Algebraic Expressions (cont'd)
Evaluate the expression $w^{2}+2 z^{3}$ if $w=4, x=-12, y=64$ and $z=-3$.
Solution:

$=(4)^{2}+2(-3)^{3}$	
$=16+2(-27)$	
$=16-54$	
$=-38$	Substitute $w=4$ and $z=-3$.
$=$	Multiply.
$=$	Subtract.

