(1.1) Basic Concepts

Objectives

1 Write sets using set notation.
2 Use number lines.
3 Know the common sets of numbers.
4 Find the additive inverses.
5 Use absolute value.
6 Use inequality symbols.
7 Graph sets of real numbers.

Write sets using set notation.

When 0 is included with the set of natural numbers, we have the set of whole numbers, written

$$
W=\{0,1,2,3,4,5,6 \ldots\}
$$

The set containing no elements, such as the set of whole numbers less than 0 , is called the empty set, or null set, usually written \varnothing or \{ \}.

To write the fact that 2 is an element of the set $\{1,2,3\}$, we use the symbol \in (read "is an element of").

$$
2 \in\{1,2,3\}
$$

Do not write $\{\varnothing\}$ for the empty set. $\{\varnothing\}$ is a set with one element: \varnothing. Use the notation \varnothing or $\}$ for the empty set.

Write sets using set notation.

Two sets are equal if they contain exactly the same elements. For example, $\{1,2\}=\{2,1\}$ (Order does not matter.)
$\{0,1,2\} \neq\{1,2\}(\neq$ means "is not equal to"), since one set contains the element 0 while the other does not

Letters called variables are often used to represent numbers or to define sets of numbers. For example,

$$
\{x \mid x \text { is a natural number between } 3 \text { and } 15\}
$$

(read "the set of all elements x such that x is a natural number

Write sets using set notation.

A set is a collection of objects called the elements or members of the set

In algebra, the elements of a set are usually numbers. Set braces, \{ \}, are used to enclose the elements.

Since we can count the number of elements in the set $\{1,2,3\}$, it is a finite set.

The set $N=\{1,2,3,4,5,6 \ldots\}$ is called the natural numbers, or counting numbers.

The three dots (ellipsis points) show that the list continues in the same pattern indefinitely.

We cannot list all the elements of the set of natural numbers, so it is an infinite set.
between 3 and 15 " $\}$ defines the set $\{4,5,6,7, \ldots 14\}$.

Write sets using set notation.

The notation $\{x \mid x$ is a natural number between 3 and 15$\}$ is an example of set-builder notation.

CLASSROOM
 EXAMPLE 1
 Listing the Elements in Sets

List the elements in $\{x \mid x$ is a natural number greater than 12$\}$.

Solution:

$\{13,14,15, \ldots\}$

CLASSROOM	
EXAMPLE 2	Using Set-Builder Notation to Describe Sets

Use set builder notation to describe the set
$\{0,1,2,3,4,5\}$

Solution:

$\{x \mid x$ is a whole number less than 6$\}$

Use number lines.

The set of numbers identified on the number line above, including positive and negative numbers and 0 , is part of the set of integers, written

$$
I=\{\ldots,-3,-2,-1,0,1,2,3 \ldots\}
$$

Use number lines.

Each number on a number line is called the coordinate of the point that it labels while the point is the graph of the number.

The fraction $3 / 4$ graphed on the number line is an example of a rational number. A rational number can be expressed as the quotient of two integers, with denominator not 0 . The set of all rational numbers is written

$$
\left\{\left.\frac{p}{q} \right\rvert\, p \text { and } q \text { are integers, } q \neq 0\right\} .
$$

Use number lines.

The set of rational numbers includes the natural numbers, whole numbers, and integers, since these numbers can be written as fractions.
For example,

$$
20=\frac{20}{1}
$$

A rational number written as a fraction, such as $1 / 2$ or $1 / 8$, can also be expressed as a decimal by dividing the numerator by the denominator.

Decimal numbers that neither terminate nor repeat are not rational numbers and thus are called irrational numbers.
For example,

$$
\sqrt{2}=1.414213562 \ldots \text { and }-\sqrt{7}=-2.6457513 \ldots
$$

$\begin{gathered}\text { CLASSROOM } \\ \text { EXAMPLE } 4\end{gathered}$
Determining Relationships Between Sets of Numbers
Decide whether the statement is true or false. If it is false, tell why.
Solution:
Some integers are whole numbers.
\quad true
Every real number is irrational.
false; some real numbers are irrational, but others are rational numbers.

Find the additive inverses.

Change the sign of a number to get its additive inverse. The sum of a number and it additive inverse is always 0 .

Find the additive inverses.

Uses of the Symbol -

The symbol "-" is used to indicate any of the following:

1. a negative number, such as -9 or -15 ;
2. the additive inverse of a number, as in " -4 is the additive inverse of 4 ";
3. subtraction, as in 12-3.

Use absolute value.

The absolute value of a number a, written $|a|$, is the distance on a number line from 0 to a.

For example, the absolute value of 5 is the same as the absolute value of -5 because each number lies 5 units from 0 .

Slide 1.1-19

Use absolute value.

For any real number $a,|a|= \begin{cases}a & \text { if } a \text { is positive or } 0 \\ -a & \text { if } a \text { is negative. }\end{cases}$

Because absolute value represents distance, and distance is never negative, the absolute value of a number is always positive or 0 . Slide 1.1-20

	CLASSR EXAMPL	Finding Absolute Value			
	Simplify by finding each absolute value.				
	Solution:				
	$\|-3\|$	= 3			
	$-\|3\|$	$=-3$			
	-\|-3		$=-3$		
	$\|8\|+\|-1\|$	$=8+1=9$			
	$\|8-1\|=\|7\|=7$				
	Convishtie2012.2008.2004 PearsonEducation_lnc__S Slide 1.1-21				

CLASSROOM EXAMPLE 6		Comparing Rates of Change in Industries		
Of the customer service representatives and sewing machine operators, which will show the greater change (without regard to sign)?				
Occupation (2006-2016)			Total Rate of Change (in percent)	
Customer service representatives			24.8	
Home health aides			48.7	
Security guards			16.9	
Word processors and typists			-11.6	
File clerks			-41.3	
Solution:	Sewing machine operators		-27.2	
	Source: Bureau of Labor Statistics.			
Look for the number with the largest absolute value.				
sewing machine operators				

Use inequality symbols.

The statement

$$
4+2=6
$$

is an equation - a statement that two quantities are equal

The statement

$$
4 \neq 6 \text { (read " } 4 \text { is not equal to } 6 \text { ") }
$$

is an inequality - a statement that two quantities are not equal.
The symbol < means "is less than."

$$
8<9, \quad-7<16, \quad-8<-2, \text { and } \quad 0<4 / 3
$$

The symbol > means "is greater than."

$$
13>8, \quad 8>-2, \quad-3>-7 \quad \text { and } \quad 5 / 3>0
$$

Use inequality symbols.

\quad Inequalities on a Number Line
On a number line,
$\boldsymbol{a}<\boldsymbol{b}$ if a is to the left of $b ; \boldsymbol{a}>\boldsymbol{b}$ if \boldsymbol{a} is to the right of b.

You can use a number line to determine order

[^0]

Use inequality symbols.

In addition to the symbols $\neq,<$, and $>$, the symbols \leq and \geq are often used.

Symbol	Meaning	Example
\neq	is not equal to	$3 \neq 7$
$<$	is less than	$-4<-1$
$>$	is greater than	$3>-2$
\leq	is less than or equal to	$6 \leq 6$
\geq	is greater than or equal to	$-8 \geq-10$

Graph sets of real numbers.

Inequality symbols and variables are used to write sets of real numbers. For example, the set

$$
\{x \mid x>-2\}
$$

consists of all the real numbers greater than -2 .

On a number line, we graph the elements of this set by drawing an arrow from -2 to the right. We use a parenthesis at -2 to indicate that -2 is not an element of the given set.

The set of numbers greater than -2 is an example of an interval on the number line.

Graph sets of real numbers.

CLASSROOM Graphing an Inequality Written in Interval Notation EXAMPLE 9
ation and graph.

Write in interval notation and graph.

$$
\{x \mid x<5\}
$$

Solution:
The interval is the set of all real numbers less than 5 .
$(-\infty, 5)$

CLASSROOM	
EXAMPLE 10	Graphing an Inequality Written in Interval Notation

Write in interval notation and graph.
$\{x \mid x \geq 0\}$
Solution:

The interval is the set of all real numbers greater than or equal to 0 . We use a square bracket [since 0 is part of the set.

$$
[0, \infty)
$$

Graph sets of real numbers.

Sometimes we graph sets of numbers that are between two given numbers.

For example: $\{x \mid 2<x<8\}$
This is called a three-part inequality, is read " 2 is less than x and x is less than 8 " or " x is between 2 and 8 ."

CLASSROOM
 Graphing a Three-Part Inequality
 EXAMPLE 11
 Write in interval notation and graph.

$\{x \mid x-4 \leq x<2\}$

Solution:

Use a square bracket at -4

Use a parenthesis at 2.
[-4, 2)

(1.2) Operations on Real Numbers

Objectives
1 Add real numbers.
2 Subtract real numbers.

3 Find the distance between two points on a number line.
4 Multiply real numbers.

5 Find reciprocals and divide real numbers.

Add real numbers.

Recall that the answer to an addition problem is called the sum.

Adding Real Numbers

Same Sign To add two numbers with the same sign, add their absolute values. The sum has the same sign as the given numbers.

Different Signs To add two numbers with different signs, find the absolute values of the numbers, and subtract the smaller absolute value from the larger. The sum has the same sign as the number with the larger absolute value.

CLASSROOM
EXAMPLE 1
Find each sum.

$$
-6+(-15)
$$

Solution:

Find the absolute values.

$$
|-6|=6|-15|=15
$$

Because they have the same sign, add their absolute values.

Subtract real numbers.

Recall that the answer to a subtraction problem is called the difference.

Subtraction

For all real numbers a and b,
$a-b=a+(-b)$.
That is, to subtract b from a, add the additive inverse (or opposite) of b to a.

CLASSROOM	
EXAMPLE 3	Subtracting Real Numbers

Find each difference

Slide 1.2-8

CLASSROOM

$$
\begin{aligned}
\frac{3}{4}-\left(-\frac{2}{3}\right) & =\frac{3}{4}+\frac{2}{3}
\end{aligned} \begin{aligned}
& \text { To subtract, add the additive } \\
& \text { inverse (opposite). }
\end{aligned}
$$

CLASSROOM
 EXAMPLE 4
 Adding and Subtracting Real Numbers

Perform the indicated operations
$-6-(-2)-8-1$
Work from left to right.

Solution:

$=(-6+2)-8-1$
$=-4-8-1$
$=-12-1$
$=-13$
$-3-[(-7)+15]-6 \quad$ Work inside brackets.
$=-3-[8]-6$
$=-11-6$
$=-17$

Find the distance between two points on a number line.
To find the distance between the points 2 and 8, we subtract
$8-2=6$. Since distance is always positive, we must be careful to subtract in such a way that the answer is positive.

Or, to avoid this problem altogether, we can find the absolute value of the difference. Then the distance is either $|8-2|=6$ or
$|2-8|=6$.

Multiply real numbers.

Recall that the answer to a multiplication problem is called the product.

Multiplying Real Numbers

Same Sign The product of two numbers with the same sign is positive.

Different Signs The product of two numbers with different signs is negative.

Find reciprocals and divide real numbers.

The definition of division depends on the idea of a multiplicative inverse, or reciprocal.

Reciprocal
The reciprocal of a nonzero number a is $\frac{1}{a}$.

A number and its additive inverse have opposite signs. However, a number and its reciprocal always have the same sign.

Find reciprocals and divide real numbers.

Reciprocals have a product of 1

Number	Reciprocal
$-\frac{2}{5}$	$-\frac{5}{2}$
-6	$-\frac{1}{6}$
$\frac{7}{11}$	$\frac{11}{7}$
0.05	20
0	None

Division by 0 is undefined, whereas dividing 0 by a nonzero number gives the quotient 0 .

Find reciprocals and divide real numbers.

The result of dividing one number by another is called the quotient.

$$
\begin{aligned}
& \qquad \begin{array}{l}
\text { Division } \\
\text { For all real numbers } a \text { and } b(\text { where } b \neq 0), \\
\boldsymbol{a} \div \boldsymbol{b}=\frac{a}{b}=\boldsymbol{a} \cdot \frac{1}{b}
\end{array} .
\end{aligned}
$$

That is, multiply the first number (the dividend) by the reciprocal of the second number (the divisor)

Dividing Real Numbers

Same Sign The quotient of two nonzero real numbers with the same sign is positive.

Different Signs The product of two nonzero real numbers with different signs is negative

$$
\begin{aligned}
& \begin{array}{c}
\begin{array}{c}
\text { CLASSROOM } \\
\text { EXAMPLE } 7
\end{array}
\end{array} \text { Dividing Real Numbers } \\
& \text { Find each quotient. } \\
& \begin{array}{ll}
\frac{-15}{-3} & =-15 \cdot \frac{1}{-3} \\
\text { Solution: }
\end{array} \\
& \begin{aligned}
-\frac{3}{8} & =5
\end{aligned} \begin{array}{l}
\text { Same signs; quotient is } \\
\text { positive. }
\end{array} \\
& \begin{aligned}
\frac{3}{16} & =-\frac{3}{8} \cdot\left(\frac{16}{11}\right) \\
\frac{3}{4} \div\left(-\frac{7}{16}\right)=-\frac{6}{11} & \begin{array}{l}
\text { The reciprocal of } 11 / 16 \text { is } \\
16 / 11 .
\end{array} \\
=\frac{3}{4} \cdot-\frac{16}{7} & =-\frac{48}{28} \quad \begin{array}{l}
\text { Multiply by the reciprocal. }
\end{array} \\
& =-\frac{4 \cdot 2 \cdot 6}{4 \cdot 7} \quad=-\frac{12}{7}
\end{aligned}
\end{aligned}
$$

1.3 Exponents, Roots, and Order of Operations

Objectives
1 Use exponents.
2 Find square roots

3 Use the order of operations.
4 Evaluate algebraic expressions for given values of variables.

Use exponents.

In algebra we use exponents as a way of writing products of repeated factors.

$$
\underbrace{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}_{5 \text { factors of } 2}=2^{5}
$$

The number 5 shows that 2 is used as a factor 5 times.
The number 5 is the exponent, and 2 is the base.

Use exponents.

Exponential Expression
If a is a real number and n is a natural number, then

$$
\mathbf{a}^{n}=\underbrace{\mathbf{a} \cdot \mathbf{a} \cdot \mathbf{a} \cdot \ldots \cdot \mathbf{a}}_{n \text { factors of } a}
$$

where n is the exponent, a is the base, and a^{n} is an exponential expression. Exponents are also called powers.

```
CLASSROOM Using Exponential Notation
EXAMPLE 1
Write using exponents.
```

$\frac{2}{7} \cdot \frac{2}{7} \cdot \frac{2}{7} \cdot \frac{2}{7}$

Solution:
Here, $\frac{2}{7}$ is used as a factor 4 times.
$\underbrace{\frac{2}{7} \cdot \frac{2}{7} \cdot \frac{2}{7} \cdot \frac{2}{7}}_{4 \text { factors of } \frac{2}{7}}=\left(\frac{2}{7}\right)^{4}$
Read as " $\frac{2}{7}$ to the fourth power."

Use exponents.

Sign of an Exponential Expression

The product of an odd number of negative factors is negative.

The product of an even number of negative factors is positive.

It is important to distinguish between $-a^{n}$ and $(-a)$

Be careful when evaluating an exponential expression with a negative sign.

Find square roots.

The opposite (inverse) of squaring a number is called taking its square root.

The square root of 49 is 7
Another square root of 49 is -7 , since $(-7)^{2}=49$

Thus 49 has two square roots: 7 and -7 .

We write the positive or principal square root of a number with the symbol $\sqrt{ }$, called a radical symbol.

Find square roots.

The negative square root of 49 is written

$$
-\sqrt{49}=-7 .
$$

Since the square of any nonzero real number is positive, the square root of a negative number, such as $\sqrt{-49}$ is not a real number.

Use the order of operations.

Order of Operations

1. Work separately above and below any fraction bar.
2. If grouping symbols such as parentheses (), brackets [], or absolute value bars | | are present, start with the innermost set and work outward.
3. Evaluate all powers, roots, and absolute values.
4. Multiply or divide in order from left to right.
5. Add or subtract in order from left to right

Use the order of operations.

Some students like to use the mnemonic "Please Excuse My Dear Aunt Sally" to help remember the rules for order of operations.

Be sure to multiply or divide in order from left to right. Then add or subtract in order from left to right

CLASSROOM EXAMPLE 6	Using the Order of Operations	
Simplify.		
$\frac{1}{2} \cdot 10-6+\sqrt{9}$		
$\frac{5}{6} \cdot 12-3(2)^{2}$		
Work separately above and below the fraction bar.		
Solution: $\frac{\frac{1}{2} \cdot 10-6+\sqrt{9}}{\frac{5}{6} \cdot 12-3(2)^{2}}=\frac{\frac{1}{2} \cdot 10-6+3}{\frac{5}{6} \cdot 12-3(4)}$ Evaluate the root and the power.		
	$=\frac{5-6+3}{10-3(4)}$	Multiply the fraction and whole number.
	$=\frac{2}{10-12} \quad=\frac{2}{-2}=-1$	Subtract and add in the numerator. Multiply 3(4).

Evaluate algebraic expressions for given values of

 variables.Any sequence of numbers, variables, operation symbols, and/or grouping symbols formed in accordance with the rules of algebra is called an algebraic expression.

$$
6 a b, \quad 5 m-9 n, \quad \text { and } \quad-2\left(x^{2}+4 y\right)
$$

We evaluate algebraic expressions by substituting given values for the variables.

CLASSROOM \quad Evaluating Algebraic Expressions

Evaluate the expression if $w=4, x=-12, y=64$ and $z=-3$.
$\frac{5 x+z \sqrt{y}}{x-1}$
Solution:

$$
\begin{array}{ll}
=\frac{5(-12)+(-3) \sqrt{64}}{-12-1} & \text { Substitute } x=-12, y=64 \text { and } z=-3 . \\
=\frac{-60+(-3)(8)}{-13} & \begin{array}{l}
\text { Work separately above and below the } \\
\text { fraction bar. }
\end{array} \\
=\frac{-60-24}{-13}=\frac{-84}{-13}=\frac{84}{13}
\end{array}
$$

CLASSROOM
EXAMPLE 7
Evaluating Algebraic Expressions (cont'd)
Evaluate the expression $w^{2}+2 z^{3}$ if $w=4, x=-12, y=64$ and $z=-3$.
Solution:

$=(4)^{2}+2(-3)^{3}$	
$=16+2(-27)$	
$=16-54$	
$=-38$	Substitute $w=4$ and $z=-3$.
$=$	Multiply.
$=$	Subtract.

(1.4) Properties of Real Numbers

Objectives
1 Use the distributive property.
2 Use the identity properties.
3 Use the inverse properties.
4 Use the commutative and associative properties.
5 Use the multiplication property of 0.

Use the distributive property.

> The Distributive Property For any real numbers, a, b, and c, the following are true.

The distributive property can be extended to more than two numbers and provides a way to rewrite a product as a sum.

$$
a(b+c+d)=a b+a c+a d
$$

When we rewrite $a(b+c)$ as $a b+a c$, we sometimes refer to the process as "removing" or "clearing" parentheses.

	CLASSROOM EXAMPLE 1	Using the	
	Use the distributive property to rewrite each expression.		
		lution:	
	-4(p-5)		
	$=-4 p-(-4)(5)$		
	$=-4 p+20$		
	$-6 m+2 m$		
	$=(-6+2) m$		
	$=-6 m+2 m$		
	$=-4 m$		

$$
\begin{aligned}
& \begin{array}{l|l}
\text { CLASSROOM } \\
\text { EXAMPLE } 1 & \text { Using the Distributive Property (cont'd) }
\end{array} \\
& 2 r+3 s \\
& \text { Solution: } \\
& \text { Because there is no common number or variable here, we } \\
& \text { cannot use the distributive property to rewrite the } \\
& \text { expression. }
\end{aligned}
$$

Use the identity properties.

The number 0 is the only number that can be added to any number and leaves the number unchanged. Thus, zero is called the identity element for addition, or the additive identity.

Similarly, the number 1 is the only number that can be multiplied with another number and leaves the number unchanged. Thus, one is called the identity element for multiplication or the multiplicative identity.

Identity Properties

For any real number a, the following are true.

$$
\begin{gathered}
a+0=0+a=a \\
a \cdot 1=1 \cdot a=a
\end{gathered}
$$

CLASSROOM	
EXAMPLE 2	Using the Identity Property $1 \cdot a=a$

Simplify each expression.
$x-3 x$ Solution:
$=1 x-3 x$
$=1 x-3 x \quad$ Identity property.
$=(1-3) x \quad$ Distributive property.
$=-2 x \quad$ Subtract inside parentheses.
$-(3+4 p)$
$=-1(3+4 p)$
$=-1(3)+(-1)(4 p) \quad$ Identity property.
$=-3-4 p$
Multiply.
Slide 1.4 -

Use the inverse properties.

The additive inverse (or opposite) of a number a is $-a$. Additive inverses have a sum of 0 .
The multiplicative inverse (or reciprocal) of a number a is $\frac{1}{a}$.
Multiplicative inverses have a product of 1 .
Inverse Properties
For any real number a, the following are true

$$
\begin{aligned}
a+(-a) & =0 \quad \text { and } \quad-a+a=0 \\
a \cdot \frac{1}{a} & =1 \quad \text { and } \quad \frac{1}{a} \cdot a=1 \quad(a \neq 0) .
\end{aligned}
$$

The inverse properties "undo" addition or multiplication.

Use the inverse properties.

A term is a number or the product of a number and one or more variables raised to powers.

The numerical factor in a term is called the numerical coefficient, or just the coefficient.

Terms with exactly the same variables raised to exactly the same powers are called like terms.

$5 y$ and $-21 y$	$-6 x^{2}$ and $9 x^{2}$	Like terms
$3 m$ and $16 x$	$7 y^{3}$ and $-3 y^{2}$	Unlike terms

Remember that only like terms may be combined.

Use the commutative and associative properties.

CLASSROOM EXAMPLE 3	Using the Commutative and Associative Properties
Simplify.	
Solution:	
$12 b-9+4 b-7 b+1$	
$=(12 b+4 b)-9-7 b+1$	
$=(12+4) b-9-7 b+1$	
$=16 b-9-7 b+1$	
$=(16 b-7 b)-9+1$	
$=(16-7) b-9+1$	
$=9 b-8$	

[^0]: caumon Be careful when ordering negative numbers.

