

Write sets using set notation. A set is a collection of objects called the elements or members of the set. In algebra, the elements of a set are usually numbers. Set braces, { }, are used to enclose the elements. Since we can count the number of elements in the set {1, 2, 3}, it is a finite set. The set N = {1, 2, 3, 4, 5, 6...} is called the natural numbers, or counting numbers. The three dots (*ellipsis* points) show that the list continues in the same pattern indefinitely. We cannot list all the elements of the set of natural numbers, so it is an infinite set.

less than 0, is called the **empty set**, or **null set**, usually written \emptyset or $\{$

To write the fact that 2 is an element of the set {1, 2, 3}, we use the symbol \in (read "is an element of").

$2 \in \{1, 2, 3\}$

Slide 1.

Do not write $\{\varnothing\}$ for the empty set. $\{\varnothing\}$ is a set with one element: \emptyset . Use the notation \emptyset or $\{\ \}$ for the empty set.

Two sets are equal if they contain exactly the same elements. For example, $\{1, 2\} = \{2, 1\}$ (Order does not matter.)

 $\{0,\,1,\,2\}\neq\{1,\,2\}~(\neq$ means "is not equal to"), since one set contains the element 0 while the other does not.

Letters called **variables** are often used to represent numbers or to define sets of numbers. For example,

{x | x is a natural number between 3 and 15}

(read "the set of all elements x such that x is a natural number between 3 and 15") defines the set {4, 5, 6, 7, ...14}.

CLASSROOM EXAMPLE 1 Listing the Elements in Sets

List the elements in $\{x \mid x \text{ is a natural number greater than } 12 \}$.

Solution:

{13, 14, 15, ...}

	Sets of Numbers
Natural numbers, or counting numbers	{1, 2, 3, 4, 5, 6,}
Whole numbers	{0, 1, 2, 3, 4, 5, 6,}
Integers	{, -3, -2, -1, 0, 1, 2, 3,}
Rational numbers	$\left\{ \frac{p}{q} \mid p \text{ and } q \text{ are integers}, q \neq 0 \right\}.$
Irrational numbers	$x \mid x$ is a real number that is not rational
Real numbers	{x x is a rational number or an irrational number}

CLASSROOM EXAMPLE 5	Finding /	Absolute Value	
Simplify by find	ing each abso Solution:	olute value.	
-3	= 3		
- 3	= - 3		
- -3	= - 3		
8 + –1	= 8 + 1	= 9	
8 – 1	= 7	= 7	
Copyright © 2012, 2008, 2004	Pearson Education Inc.		Slide 1.1- 21

Symbol	Meaning	Example
¥	is not equal to	3≠7
<	is less than	-4 < -1
>	is greater than	3 > -2
≤	is less than or equal to	6≤6
≥	is greater than or equal to	-8≥-10

CLASSROOM EXAMPLE 8	Using Inequality Symbols	
Determine wheth	her each statement is <i>true</i> or <i>false.</i>	
:	Solution:	
-2 ≤ -3	false	
-1≥-9 1	true	
8 ≤ 8 ¹	true	
3(4) > 2(6)	false	
Copyright © 2012, 2008, 2004, Pe	arson Education. Inc	Slide 1.1- 27

Graph sets of real numbers.	
To write intervals, use interval notation.	
The interval of all numbers greater than –2, would be (–2, ∞).	
The infinity symbol (∞) does not indicate a number; it shows that the interval includes all real numbers greater than -2 .	at
The left parenthesis indicated that -2 is not included. A parenthesis is always used next to the infinity symbol.	
The set of real numbers is written in interval notation as $(-\infty,\infty).$	
Convright © 2012. 2008. 2004. Pearson Education. Inc.	Slide 1.1- 29

CLASSROOM EXAMPLE 11	Graphing a Thre	e-Part	Inequa	ality					
Write in interval r	otation and graph.								
$\{x \mid x-4 \le x < 2\}$									
Solution:									
Use a square br	acket at –4.								
Use a parenthes	is at 2.								
[4, 2)									
+ + + + + + + + + + + + + + + + + + +	-5 -4 -3 -2 -1 0	1 2	34	5 (67	8	9	10	⊧►
G	Education Inc							Slide 1	1.33

CLASSROOM EXAMPLE 3	Subtracting R	eal Numbers (cont'd)	
$\frac{3}{4} - \left(-\frac{2}{3}\right)$	$=\frac{3}{4}+\frac{2}{3}$	To subtract, add the additive inverse (opposite).	
	$=\frac{3\cdot 3}{4\cdot 3}+\frac{2\cdot 4}{3\cdot 4}$	Write each fraction with the least common denominator, 12.	
	$=\frac{9}{12}+\frac{8}{12}$	Add numerators; keep the same denominator.	
	$=\frac{17}{12}$		
Copyright © 2012-2008-2004 Per	arson Education Inc	S	lide 1.2- 9

	CLASSROOM EXAMPLE 4	Adding and Subtracting Real Numbers			
P	erform the indica	ated operations.			
-6	6 - (-2) - 8 - 1	Work from left to right.			
S	olution:				
	= (-6 + 2) - 8 -	- 1			
	= -4 - 8 - 1				
	= -12 - 1				
	= -13				
-3	3 – [(–7) + 15] –	6 Work inside brackets.			
	= -3 - [8] - 6				
	= -11 - 6				
	= -17				
Convri	ieht © 2012, 2008, 2004, Pear	son Education Inc	Slide 1.2- 10		

Multiply real numbers.

Recall that the answer to a multiplication problem is called the product.

Multiplying Real Numbers

Same Sign The product of two numbers with the same sign is positive.

Different Signs The product of two numbers with different signs is negative.

CLASSROOM EXAMPLE 6	Multiplying	Real Numbers	
Find each produ	ict.		
7(–2)	Solution: = -14	Different signs; product is negative.	
-0.9(-15)	= 13.5	Same signs; product is positive.	
$-\frac{5}{8}(16)$	= -10	Different signs; product is negative.	
<u>'opyright © 2012–2008–2004–P</u>	Pearson Education Inc		Slide 1.2- 14

Slide 1.2- 13

	Number	Reciprocal	
	$-\frac{2}{5}$	$-\frac{5}{2}$	
	-6	$-\frac{1}{6}$	
	$\frac{7}{11}$	$\frac{11}{7}$	
	0.05	20	
	0	None	
CAUTION Divisi gives	on by 0 is undefined, wher the quotient 0.	eas dividing 0 by a nonzero nu	mber
C	2004 Denver Education In-		Slide 1.2-

CLASSROOM EXAMPLE 7	Dividing R	eal Numbers	5
Find each quotier	nt.		
$\frac{-15}{-3}$ =	$-15 \cdot \frac{1}{-3}$	= 5	Same signs; quotient is positive.
$\frac{-\frac{3}{8}}{\frac{11}{16}} =$	$-\frac{3}{8}\cdot\left(\frac{16}{11}\right)$	$=-\frac{6}{11}$	The reciprocal of 11/16 is 16/11.
$\frac{3}{4} \div \left(-\frac{7}{16}\right) =$	$\frac{3}{4} \cdot -\frac{16}{7}$	$=-\frac{48}{28}$	Multiply by the reciprocal.
Convrient © 2012, 2008, 2004, Pea	rson Education. Inc.	$= -\frac{4 \cdot 2 \cdot 6}{4 \cdot 7}$	$= -\frac{12}{7}$ Slide 1.2-18

CLASSROOM EXAMPLE 1	Using Exponential Notation (cont'd)	
(-10)(-10)(-10))	
Solution:		
(-10) ³		
Read as "-10 cu	bed."	
$y \cdot y \cdot y \cdot y \cdot y$	$y \cdot y \cdot y \cdot y$	
y^8		
G		Slide 1 3.

CLASSROOM EXAMPLE 2		Evaluating Exponential Expressions			
Evaluate. 3 ⁴ Solution:					
3 · 3 · 3 · 3	= 8	31	3 is used as a factor 4 times.		
(-3)(-3)	=9)	The base is –3.		
-3² -(3·3)	= -	-9	There are no parentheses. The exponent 2 applies <i>only</i> to the number 3, not to –3.		
Convicts © 2012 2008 200	04 Pears	on Education	tion Inc	Slide 1.3- 6	

Find square roots. The negative square root of 49 is written $-\sqrt{49} = -7$. Since the square of any nonzero real number is positive, the square root of a negative number, such as $\sqrt{-49}$ is not a real number. The symbol $\sqrt{}$ is used only for the *positive* square root, except that $\sqrt{0} = 0$. The symbol $\sqrt{}$ is used for the negative square root.

Slide 1.3-

CLASSRO EXAMPLE	ОМ Е 3	Finding Square Roots		
Find each s	quare	root that is a real number.		
	ition:			
$-\sqrt{\frac{121}{81}}$	= -	$\frac{11}{9}$		
$\sqrt{49}$	= 7			
-\sqrt{49}	= -	7		
√-49	Not the r	a real number, because the negative sign is insi radical sign. No <i>real number</i> squared equals –49	de).	
Convright @ 2012, 2008	2004 Pea	rson Education. Inc. Sliv	de 1.3- 10	

CLASSROOM EXAMPLE 7	valuating Algebraic Expressions (cor	nťď)		
Evaluate the expression $w^2 + 2z^3$ if $w = 4$, $x = -12$, $y = 64$ and				
Solution:				
$= (4)^2 + 2(-3)^2$	Substitute $w = 4$ and $z = -3$.			
= 16 + 2(-27	Evaluate the powers.			
= 16 - 54	Multiply.			
= -38	Subtract.			

Use the identity properties.
The number 0 is the only number that can be added to any number and leaves the number unchanged. Thus, zero is called the identity element for addition , or the additive identity .
Similarly, the number 1 is the only number that can be multiplied with another number and leaves the number unchanged. Thus, one is called the identity element for multiplication or the multiplicative identity.
Identity Properties
For any real number <i>a</i> , the following are true.
<i>a</i> + 0 = 0 + <i>a</i> = <i>a</i>
a · 1 = 1 · a = a
a · 1 = 1 · a = a

Slide 1.4

CLASSROOM EXAMPLE 2	Using the Identity Property $1 \cdot a = a$			
Simplify each exp x-3x Solution: = 1x-3x	ression.			
= 1x - 3x		Identity property.		
= (1 – 3) <i>x</i>		Distributive property.		
= -2 <i>x</i>		Subtract inside parentheses.		
-(3 + 4p) = $-1(3 + 4p)$				
= -1(3) +	(-1)(4 <i>p</i>)	Identity property.		
= -3 - 4p	son Education. Inc.	Multiply.	Slide 1.4- 6	

CLASSROOM EXAMPLE 4	Using the Propertie	es of Real Numbers		
Simplify each expression. Solution: 12b - 9b + 5b - 7b				
=	= (12 – 9 + 5 – 7)b	Distributive property.		
:	= b	Combine like terms.		
6 - (2x + 7) - 3				
-	= 6 - 2x - 7 - 3	Distributive property.		
:	= -2x + 6 - 7 - 3	Commutative property.		
:	= -2x - 4	Combine like terms.		
Copyright © 2012, 2008, 2004. Pe	arson Education. Inc.		Slide 1.4- 11	

